1. 前言
AVL树是一种自平衡的二叉搜索树。为什么会出现AVL树。众所周知,虽然普通的二叉搜索树的平均时间复杂度为O(logn),但最差的情况的时间复杂度为O(n)。为了避免最差的这种情况,出现了AVL树。
我们规定:如果树有个节点它的左子树的高度-右子树的高度大于1或者它的右子树的高度-左子树的高度小于-1,我们就说该二叉搜索树是不平衡的,需要调整。
2. 四种失衡情况以及解决方案
简单聊聊AVL树相关的四种失衡情况:
- (LL)某节点的左子树高度-右子树高度大于1,且失衡节点的左孩子也高于右孩子或等高;
- (LR)某节点的左子树高度-右子树高度大于1,且其左孩子的左子树高度-右子树高度小于-1;
- (RL)某节点的右子树高度-左子树高度大于1,且其右孩子的左子树高度-右子树高度大于1;
- (RR)某节点的右子树高度-左子树高度大于1,且失衡节点的右孩子也高于左孩子或等高;
AVL树需要进行调整:
- (LL)该节点需要右旋。
- (LR)该节点的左孩子需要左旋,且该节点需要右旋。
- (RL)该节点的右孩子需要右旋,且该节点需要左旋。
- (RR)该节点需要左旋。
LL旋转情况如图:
LR旋转情况如图:
RL旋转情况如图:
RR旋转情况如图:
解决方法:
// 右旋(LL)private AVLNode RightRotation(AVLNode red) {AVLNode yellow = red.left;AVLNode blue = yellow.right;yellow.right = red;red.left = blue;// 更新red节点的高度updateHeight(red);// 再更新yellow节点的高度(因为red是yellow的孩子节点,// 只有计算对了red节点的高度,才会正确得出yellow节点的高度)updateHeight(yellow);return yellow;}// 左旋(RR)private AVLNode LeftRotation(AVLNode red){AVLNode yellow = red.right;AVLNode blue = yellow.left;yellow.left = red;red.left = blue;updateHeight(red);updateHeight(yellow);return yellow;}// (LR)private AVLNode LeftRightRotation(AVLNode node) {// 失衡节点的左孩子需要左旋node.left = LeftRotation(node.left);// 失衡节点需要右旋return RightRotation(node);}// (RL)private AVLNode RightLeftRotation(AVLNode node) {// 失衡节点的右孩子需要右旋node.right = RightRotation(node.right);// 失衡节点需要左旋return LeftRotation(node);}
3. AVL树代码
public class AVLTree {static private class AVLNode{int key;Object value;AVLNode left;AVLNode right;// 一个节点的默认高度为1int height = 1;public AVLNode(int key, Object value) {this.key = key;this.value = value;}public AVLNode(int key, Object value, AVLNode left, AVLNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}private int doHeight(AVLNode node){return node == null ? 0 : node.height;}private void updateHeight(AVLNode node) {if (node == null) {return;}node.height = Integer.max(doHeight(node.left), doHeight(node.right)) + 1;}// 平衡因子(balance factor),处于-1,0,1时是满足平衡的。private int bf(AVLNode node){return doHeight(node.left) - doHeight(node.right);}// 右旋(LL)private AVLNode RightRotation(AVLNode red) {AVLNode yellow = red.left;AVLNode blue = yellow.right;yellow.right = red;red.left = blue;// 更新red节点的高度updateHeight(red);// 再更新yellow节点的高度(因为red是yellow的孩子节点,// 只有计算对了red节点的高度,才会正确得出yellow节点的高度)updateHeight(yellow);return yellow;}// 左旋(RR)private AVLNode LeftRotation(AVLNode red){AVLNode yellow = red.right;AVLNode blue = yellow.left;yellow.left = red;red.left = blue;updateHeight(red);updateHeight(yellow);return yellow;}// (LR)private AVLNode LeftRightRotation(AVLNode node) {// 失衡节点的左孩子需要左旋node.left = LeftRotation(node.left);// 失衡节点需要右旋return RightRotation(node);}// (RL)private AVLNode RightLeftRotation(AVLNode node) {// 失衡节点的右孩子需要右旋node.right = RightRotation(node.right);// 失衡节点需要左旋return LeftRotation(node);}//检查节点是否失衡,重新平衡代码private AVLNode balance(AVLNode node) {if (node == null) return null;int bf = bf(node);if (bf > 1 && bf(node.left) >= 0){// LLreturn RightRotation(node);} else if (bf > 1 && bf(node.left) < 0) {return LeftRightRotation(node);} else if (bf < -1 && bf(node.right) > 0) {return RightLeftRotation(node);} else if (bf < -1 && bf(node.right) <= 0) {return LeftRotation(node);}// 进行到这,说明该节点不需要做平衡调整return node;}// 向AVL树添加节点,并保持平衡特性public void put(AVLNode node) {}
}