您的位置:首页 > 汽车 > 新车 > 工程 建筑 公司 取名 参考_能打开各种网站的浏览器下载合集_怎样策划一个营销型网站_百度推广最简单方法

工程 建筑 公司 取名 参考_能打开各种网站的浏览器下载合集_怎样策划一个营销型网站_百度推广最简单方法

2024/11/16 7:19:02 来源:https://blog.csdn.net/weixin_41717861/article/details/139175980  浏览:    关键词:工程 建筑 公司 取名 参考_能打开各种网站的浏览器下载合集_怎样策划一个营销型网站_百度推广最简单方法
工程 建筑 公司 取名 参考_能打开各种网站的浏览器下载合集_怎样策划一个营销型网站_百度推广最简单方法

这篇文章主要是对yolov9目标检测和目标分割预测测试时的报错,进行解决方案。

在说明解决方案前,严重投诉、吐槽一些博主发的一些文章,压根没用的解决方法,也不知道他们从哪里抄的,误人子弟、浪费时间。

我在解决前,也搜索了很多相关的报错解决方案,他们纯属乱来,都没有亲自尝试。

报错一:目标检测AttributeError: 'list' object has no attribute 'device'

最近微智启软件工作室在运行yolov9目标检测的detect.py测试代码时,报错:
File "G:\down\yolov9-main\yolov9-main\detect.py", line 102, in run
ValueError: only one element tensors can be converted to Python scalars
    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
  File "G:\down\yolov9-main\yolov9-main\utils\general.py", line 905, in non_max_suppression
    device = prediction.device
AttributeError: 'list' object has no attribute 'device'

这是因为general.py代码中,900行左右的代码错误了,可以看到里面是一个包含两个数据的,假如直接设置是会报错的

general.py的位置可以直接点击报错的这个链接跳转,当然也可以在根目录下的yolov9-main\utils\general.py手动打开

下面的yolov5的,可以看到只有一个数据,所以不会报错,照抄代码是不对的哟,官方大大!

所以需要对代码进行遍历,设置它改写后的代码如下,替换之前的代码即可。

  if isinstance(prediction, (list, tuple)):processed_predictions = []  # 用于存储处理后的张量列表for pred_tensor in prediction:# 对每个张量进行处理processed_tensor = pred_tensor[0]  # 假设你只关心张量中的第一个结果processed_predictions.append(processed_tensor)  # 将处理后的张量添加到列表中# 使用处理后的张量列表中的第一个张量作为预测结果prediction = processed_predictions[0]# 在此之后可以继续使用 prediction 变量device = prediction.device



替换后的代码格式如下

之后再运行,即可完美解决!
现在是2024年2月23日,后期官方可能会修改这个bug,根据具体情况来修改。

报错二:目标检测AttributeError: 'list' object has no attribute 'view'

```
Traceback (most recent call last):
  File "G:\down\yolov9-main\yolov9-main\train.py", line 635, in <module>
    main(opt)
  File "G:\down\yolov9-main\yolov9-main\train.py", line 529, in main
    train(opt.hyp, opt, device, callbacks)
  File "G:\down\yolov9-main\yolov9-main\train.py", line 305, in train
    loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
  File "G:\down\yolov9-main\yolov9-main\utils\loss_tal.py", line 168, in __call__
    pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
  File "G:\down\yolov9-main\yolov9-main\utils\loss_tal.py", line 168, in <listcomp>
    pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
AttributeError: 'list' object has no attribute 'view'
```

解决方案:在v8之前,我们都是习惯配置train.py进行训练的,但是根据v9作者在GitHub上的回复来看,我们应该用train_dual.py这个来训练,而不是train.py。

train.py至于有啥用,暂时没见回复,不过我觉得更多的像是一种备份没有删除。

三:

	# Update modelmodel.eval()for k, m in model.named_modules():# if isinstance(m, (Detect, V6Detect)):if isinstance(m, Detect):m.inplace = inplacem.dynamic = dynamicm.export = Truefor _ in range(2):y = model(im)  # dry runsif half and not coreml:im, model = im.half(), model.half()  # to FP16    # shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shapeshape = tuple((y[0][0] if isinstance(y, tuple) else y).shape)  # model output shapemetadata = {'stride': int(max(model.stride)), 'names': model.names}  # model metadataLOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")

报错三:分割预测报错AttributeError: 'list' object has no attribute 'shape'

Traceback (most recent call last):File "predict.py", line 246, in <module>main(opt)File "predict.py", line 241, in mainrun(**vars(opt))File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_contextreturn func(*args, **kwargs)File "predict.py", line 126, in runmasks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True)  # HWCFile "/root/autodl-tmp/yolov9-main/utils/segment/general.py", line 54, in process_maskc, mh, mw = protos.shape  # CHW
AttributeError: 'list' object has no attribute 'shape'

解决方案:

根据报错的位置,找到segment文件夹下面的predict.py。在126行附近,把原本masks的这整行,替换成新的(如下代码)

masks = process_mask(proto[2].squeeze(0), det[:, 6:], det[:, :4], im.shape[2:], upsample=True)   # HWC

最后也吐槽一下官方,那么久了,这么基础的功能还总是报错,能不能用点心啊。

文章由微智启原创,转载请标明出处,谢谢。
如果还有其他问题,可以联系技术客服:3447362049
 

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com