前言
踏入深度学习的奇妙世界,就像开启了一场探索未知的旅程。今天,我们将携手踏上一小段轻松而充满乐趣的入门之旅——价格分类。想象一下,通过神奇的神经网络,我们能够教会电脑理解并预测商品的价格区间,是不是既实用又令人兴奋呢?别担心复杂的数学公式,让我们以轻松愉悦的心态,一步步揭开深度学习的神秘面纱,从价格分类这个小案例开始,共同见证智能的力量吧!
案例背景
小明创办了一家手机公司,他不知道如何估算手机产品的价格。为了解决这个问题,他收集了多家公司的手机销售数据。
我们需要帮助小明找出手机的功能(例如:RAM等)与其售价之间的某种关系。我们可以使用机器学习的方法来解决这个问题,也可以构建一个全连接的网络。
要求
在这个问题中,我们不需要预测实际价格,而是一个价格范围,它的范围使用 0、1、2、3 来表示,所以该问题也是一个分类问题。
1. 构建数据集
数据共有 2000 条, 其中 1600 条数据作为训练集, 400 条数据用作测试集。 我们使用 sklearn 的数据集划分工作来完成。并使用 PyTorch 的 TensorDataset 来将数据集构建为 Dataset 对象,方便构造数据集加载对象。
# 构建数据集
def create_dataset():data = pd.read_csv('data/手机价格预测.csv')# 特征值和目标值x, y = data.iloc[:, :-1], data.iloc[:, -1]x = x.astype(np.float32)y = y.astype(np.int64)# 数据集划分x_train, x_valid, y_train, y_valid = \train_test_split(x, y, train_size=0.8, random_state=88, stratify=y)# 构建数据集train_dataset = TensorDataset(torch.from_numpy(x_train.values), torch.tensor(y_train.values))valid_dataset = TensorDataset(torch.from_numpy(x_valid.values), torch.tensor(y_valid.values))return train_dataset, valid_dataset, x_train.shape[1], len(np.unique(y))train_dataset, valid_dataset, input_dim, class_num = create_dataset()
2. 构建分类网络模型
我们构建的用于手机价格分类的模型叫做全连接神经网络。它主要由三个线性层来构建,在每个线性层后,我们使用的时 sigmoid 激活函数。
# 构建网络模型
class PhonePriceModel(nn.Module):def __init__(self, input_dim, output_dim):super(PhonePriceModel, self).__init__()self.linear1 = nn.Linear(input_dim, 128)self.linear2 = nn.Linear(128, 256)self.linear3 = nn.Linear(256, output_dim)def _activation(self, x):return torch.sigmoid(x)def forward(self, x):x = self._activation(self.linear1(x))x = self._activation(self.linear2(x))output = self.linear3(x)return output
我们的网络共有 3 个全连接层, 具体信息如下:
- 第一层: 输入为维度为 20, 输出维度为: 128
- 第二层: 输入为维度为 128, 输出维度为: 256
- 第三层: 输入为维度为 256, 输出维度为: 4
我们使用 sigmoid 激活函数.
3. 编写训练函数
网络编写完成之后,我们需要编写训练函数。所谓的训练函数,指的是输入数据读取、送入网络、计算损失、更新参数的流程,该流程较为固定。我们使用的是多分类交叉生损失函数、使用 SGD 优化方法。最终,将训练好的模型持久化到磁盘中。
def train():# 固定随机数种子torch.manual_seed(0)# 初始化模型model = PhonePriceModel(input_dim, class_num)# 损失函数criterion = nn.CrossEntropyLoss()# 优化方法optimizer = optim.SGD(model.parameters(), lr=1e-3)# 训练轮数num_epoch = 50for epoch_idx in range(num_epoch):# 初始化数据加载器dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)# 训练时间start = time.time()# 计算损失total_loss = 0.0total_num = 1# 准确率correct = 0for x, y in dataloader:output = model(x)# 计算损失loss = criterion(output, y)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 参数更新optimizer.step()total_num += len(y)total_loss += loss.item() * len(y)print('epoch: %4s loss: %.2f, time: %.2fs' %(epoch_idx + 1, total_loss / total_num, time.time() - start))# 模型保存torch.save(model.state_dict(), 'model/phone-price-model.bin')
4. 编写评估函数
评估函数、也叫预测函数、推理函数,主要使用训练好的模型,对未知的样本的进行预测的过程。我们这里使用前面单独划分出来的测试集来进行评估。
def test():# 加载模型model = PhonePriceModel(input_dim, class_num)model.load_state_dict(torch.load('model/phone-price-model.bin'))# 构建加载器dataloader = DataLoader(valid_dataset, batch_size=8, shuffle=False)# 评估测试集correct = 0for x, y in dataloader:output = model(x)y_pred = torch.argmax(output, dim=1)correct += (y_pred == y).sum()print('Acc: %.5f' % (correct.item() / len(valid_dataset)))
程序输出结果:
Acc: 0.54750
5. 网络性能调优
我们前面的网络模型在测试集的准确率为: 0.54750, 我们可以通过以下方面进行调优:
- 对输入数据进行标准化
- 调整优化方法
- 调整学习率
- 增加批量归一化层
- 增加网络层数、神经元个数
- 增加训练轮数
- 等等...
我进行下如下调整: 1. 优化方法由 SGD 调整为 Adam 2. 学习率由 1e-3 调整为 1e-4 3. 对数据数据进行标准化 4. 增加网络深度, 即: 增加网络参数量
网络模型在测试集的准确率由 0.5475 上升到 0.9625,调整后的完整代码为:
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import torch.optim as optim
import numpy as np
import time
from sklearn.preprocessing import StandardScaler# 构建数据集
def create_dataset():data = pd.read_csv('data/手机价格预测.csv')# 特征值和目标值x, y = data.iloc[:, :-1], data.iloc[:, -1]x = x.astype(np.float32)y = y.astype(np.int64)# 数据集划分x_train, x_valid, y_train, y_valid = \train_test_split(x, y, train_size=0.8, random_state=88, stratify=y)# 数据标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_valid = transfer.transform(x_valid)# 构建数据集train_dataset = TensorDataset(torch.from_numpy(x_train), torch.tensor(y_train.values))valid_dataset = TensorDataset(torch.from_numpy(x_valid), torch.tensor(y_valid.values))return train_dataset, valid_dataset, x_train.shape[1], len(np.unique(y))train_dataset, valid_dataset, input_dim, class_num = create_dataset()# 构建网络模型
class PhonePriceModel(nn.Module):def __init__(self, input_dim, output_dim):super(PhonePriceModel, self).__init__()self.linear1 = nn.Linear(input_dim, 128)self.linear2 = nn.Linear(128, 256)self.linear3 = nn.Linear(256, 512)self.linear4 = nn.Linear(512, 128)self.linear5 = nn.Linear(128, output_dim)def _activation(self, x):return torch.sigmoid(x)def forward(self, x):x = self._activation(self.linear1(x))x = self._activation(self.linear2(x))x = self._activation(self.linear3(x))x = self._activation(self.linear4(x))output = self.linear5(x)return output# 编写训练函数
def train():# 固定随机数种子torch.manual_seed(0)# 初始化模型model = PhonePriceModel(input_dim, class_num)# 损失函数criterion = nn.CrossEntropyLoss()# 优化方法optimizer = optim.Adam(model.parameters(), lr=1e-4)# 训练轮数num_epoch = 50for epoch_idx in range(num_epoch):# 初始化数据加载器dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)# 训练时间start = time.time()# 计算损失total_loss = 0.0total_num = 1# 准确率correct = 0for x, y in dataloader:output = model(x)# 计算损失loss = criterion(output, y)# 梯度清零optimizer.zero_grad()# 反向传播loss.backward()# 参数更新optimizer.step()total_num += len(y)total_loss += loss.item() * len(y)print('epoch: %4s loss: %.2f, time: %.2fs' %(epoch_idx + 1, total_loss / total_num, time.time() - start))# 模型保存torch.save(model.state_dict(), 'model/phone-price-model.bin')def test():# 加载模型model = PhonePriceModel(input_dim, class_num)model.load_state_dict(torch.load('model/phone-price-model.bin'))# 构建加载器dataloader = DataLoader(valid_dataset, batch_size=8, shuffle=False)# 评估测试集correct = 0for x, y in dataloader:output = model(x)y_pred = torch.argmax(output, dim=1)correct += (y_pred == y).sum()print('Acc: %.5f' % (correct.item() / len(valid_dataset)))if __name__ == '__main__':train()test()
感谢CSDN大佬们的支持,有需要改进的地方欢迎大家指正!