您的位置:首页 > 科技 > 能源 > 南昌网站建设方案维护_一级域名做网站_市场营销在线课程_朋友圈广告推广代理

南昌网站建设方案维护_一级域名做网站_市场营销在线课程_朋友圈广告推广代理

2024/11/19 1:33:04 来源:https://blog.csdn.net/shaoyue1234/article/details/142704911  浏览:    关键词:南昌网站建设方案维护_一级域名做网站_市场营销在线课程_朋友圈广告推广代理
南昌网站建设方案维护_一级域名做网站_市场营销在线课程_朋友圈广告推广代理

2022.DKE.Anomaly explanation: A review

  • paper
  • explanation by feature importance
    • main idea
    • Non-weighted feature importance(methods do not quantify the importance of each feature)
  • explanation by feature values
    • main idea
  • explanation by data points comparison
    • main idea
  • explanation by structure analysis
    • main idea

paper

pdf

explanation by feature importance

main idea

to explain that anomaly to the user, we can just say that attribute f1 contributed to the abnormality of the square data point.
在这里插入图片描述

Non-weighted feature importance(methods do not quantify the importance of each feature)

1999.VLDB.Finding intensional knowledge of distance-based outliers

  • define the outlier categories C = {“trivial outlier,” “weak outlier,” “strongest outlier”} to help gain better insights about the nature of outliers.

2013.ICDM.Explaining outliers by subspace separability

  • explain a given anomaly by identifying the subspace of features that best separates that outlier from the rest of the dataset.

2009.PAKDD.Outlier detection in axis-parallel subspaces of high dimensional data(SOD)

  • identify outliers in subspaces of the original feature space

2012.ICDM.Outlier detection in arbitrarily oriented subspaces(COP)

  • identify outliers in subspaces of a transformation of the original feature space

2019.ECML PKDD.Beyond outlier detection: lookout for pictorial explanation[pdf,code]

  • use a set of focus-plots, each of which “blames” or “explains away” a subset of the input outliers.(for all the outliers)

2020.ICDM.LP-Explain: Local Pictorial Explanation for Outliers[pdf]

  • identify the set of best Local Pictorial explanations (defined as the scatter plots in the 2-D space of the feature pairs) that can Explain the behavior for cluster of outliers.(different from lookout in for clusters of outliers)

2018.WACV.Anomaly explanation using metadata[pdf]

  • use tags help to explain what causes the identified anomalies, and also to identify the truly unusual examples that defy such simple categorization

explanation by feature values

main idea

在这里插入图片描述

explanation by data points comparison

main idea

what is the difference between anomalies and regular data points.

explanation by structure analysis

main idea

x1 and x2 are anomalies for the cluster of round instances and why it is the case, that y is an anomaly for the the triangles and why, and finally that z is an anomaly
for the squares and why.
在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com