您的位置:首页 > 科技 > 能源 > 【强化学习的数学原理】课程笔记--1(基本概念,贝尔曼公式)

【强化学习的数学原理】课程笔记--1(基本概念,贝尔曼公式)

2024/12/23 8:53:10 来源:https://blog.csdn.net/muyuu/article/details/139889173  浏览:    关键词:【强化学习的数学原理】课程笔记--1(基本概念,贝尔曼公式)

目录

  • 基本概念
    • State, Action, State transition
    • Policy, Reward, Trajectory, Discount Return
    • Episode
    • Markov decision process
  • 贝尔曼公式
    • 推导确定形式的贝尔曼公式
    • 推导一般形式的贝尔曼公式
      • State Value
      • Action Value
    • 一些例子
    • 贝尔曼公式的 Matric-vector form
    • 贝尔曼公式的解析解
      • 一些理论可得的结论
    • 贝尔曼公式的迭代解

基本概念

State, Action, State transition

  • State: 用于描述agent目前所处的状态,以grid-world为例,即location: s 1 , s 2 , . . . s_1, s_2, ... s1,s2,...

  • Action: 在某个State时,可以做的动作的集合,以grid-world为例,即:

  • State transition:State转移矩阵(确定情形)or State转移分布(概率情形),以grid-world为例,eg:

Policy, Reward, Trajectory, Discount Return

  • Policy:即策略,告诉agent在每个State时,应该做什么Action,也有(确定形式)和(概率形式):

Policy在实际使用时,一般是存为表格(数组)形式,eg:

  • Reward:一个实值(标量),eg:正数用于reward,负数用于punishment,数学表达,eg :
    { P ( r = 1 ∣ 当前 s t a t e ,当前选择的 a i ) = 0.8 P ( r = 0 ∣ 当前 s t a t e ,当前选择的 a i ) = 0.2 \begin{cases} P(r=1|当前state,当前选择的a_i) = 0.8\\ \\ P(r=0|当前state,当前选择的a_i) = 0.2 \end{cases} P(r=1∣当前state,当前选择的ai)=0.8P(r=0∣当前state,当前选择的ai)=0.2

  • Trajectory:即 state-action-reward 链,eg:

  • Return:即一个Trajectory上所有reward之和,eg:上图中第一个return是2,第二个return是1,所以第一个policy更好(没有进到forbidden block)

    由于在到达target s 9 s_9 s9之后, s 9 s_9 s9的action会维持在 s 9 s_9 s9,即action一直是 a 5 a_5 a5(维持不动),因此reward会一直+1(那为什么不设置到达target之后停止/退出?),引入 discount rate γ ∈ ( 0 , 1 ) \gamma \in (0,1) γ(0,1)
    discount return = 0 + 0 γ + 0 γ 2 + 1 γ 3 + 1 γ 4 + 1 γ 5 + . . . = γ 3 ( 1 + γ + γ 2 + . . . ) = γ 3 1 1 − γ \begin{aligned} \text{discount return} &= 0 + 0\gamma + 0\gamma^2 + 1\gamma^3 + 1\gamma^4 + 1\gamma^5 + ... \\ &= \gamma^3 (1 + \gamma + \gamma^2 + ...) = \gamma^3 \frac{1}{1-\gamma} \end{aligned} discount return=0+0γ+0γ2+1γ3+1γ4+1γ5+...=γ3(1+γ+γ2+...)=γ31γ1
    作用是: γ \gamma γ更趋于0时,return更受早期的action影响,而当 γ \gamma γ更趋于1时,return更受后期的action的影响

Episode

  • Episode:当有terminal state时,即到这个state就停止,称为 episodic task(有限步);反之称为 continuing task(无限步,现实不存在,但当步数非常多时,近似认为是continuing task)。可以通过以下两种方法将 episodic task 看作特殊的 continuing task,这样后面就只需要对continuing task做理解:
    1. 将terminal state看作特殊的absorbing state(即进到这个stage再也不会离开),且需要将这个state的action的reward都设为0
    2. 将terminal state看作普通的state,可以离开,且每次进入该state时 r = + 1 r = +1 r=+1 (后面采用该种,因为更一般化)

Markov decision process

需要以上几个分布:

  1. π ( a ∣ s ) \pi(a|s) π(as),在当前状态s,所做的action的分布 (即Policy
  2. P ( s ′ ∣ s , a ) P(s' | s,a) P(ss,a),在当前状态s,选定了动作a之后,下一个可能到的状态的分布(eg:往下时,即可能往下一格,也可能往下两格)
  3. P ( r ∣ s , a ) P(r | s,a) P(rs,a),在当前状态s,选定了动作a之后,可能的reward ( P ( s ′ ∣ s , a ) P(s' | s,a) P(ss,a)属同一分布,即 s ′ s' s 定了reward 就定了;还是说即使 s ′ s' s 定了,reward也仍然不是确定值?
  4. 以及Markov假设:
    P ( s t + 1 ∣ a t + 1 , s t , . . . , a 1 , s 0 ) = P ( s t + 1 ∣ a t + 1 , s t ) P ( r t + 1 ∣ a t + 1 , s t , . . . , a 1 , s 0 ) = P ( r t + 1 ∣ a t + 1 , s t ) \begin{aligned} P(s_{t+1}|a_{t+1},s_t, ..., a_1,s_0) &= P(s_{t+1}|a_{t+1},s_t) \\ P(r_{t+1}|a_{t+1},s_t, ..., a_1,s_0) &= P(r_{t+1}|a_{t+1},s_t) \end{aligned} P(st+1at+1,st,...,a1,s0)P(rt+1at+1,st,...,a1,s0)=P(st+1at+1,st)=P(rt+1at+1,st)

贝尔曼公式

推导确定形式的贝尔曼公式

定义 v i v_i vi 为从 s i s_i si 出发的Trajectory的return, eg:

则有 Bootstrapping 推导式:

⇒ v = r + γ P v \Rightarrow v = r + \gamma P v v=r+γPv

⇒ \Rightarrow 解析解 : v = ( I − γ P ) − 1 r v=(I-\gamma P)^{-1} r v=(IγP)1r


推导一般形式的贝尔曼公式

State Value

首先给出 State Value 的定义,对于一个multi-step trajectory,其步骤可以表示为:
S t → A t S t + 1 , R t + 1 → A t + 1 S t + 2 , R t + 2 → A t + 2 S t + 3 , R t + 3 , . . . S_t \overset{A_t} \rightarrow S_{t+1}, R_{t+1} \overset{A_{t+1}} \rightarrow S_{t+2}, R_{t+2} \overset{A_{t+2}} \rightarrow S_{t+3}, R_{t+3},... StAtSt+1,Rt+1At+1St+2,Rt+2At+2St+3,Rt+3,...

该条从 S t S_t St 出发的 trajectory 的 discounted return 则为:
G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2R_{t+3} + ... Gt=Rt+1+γRt+2+γ2Rt+3+...

由于 R t + 1 , R t + 2 , . . . R_{t+1}, R_{t+2}, ... Rt+1,Rt+2,... 均为随机变量,因此 G t G_t Gt 也是随机变量。

  • State Value:即当前状态为 s 时,discounted return G t G_t Gt 的期望值
    v π ( s ) = E [ G t ∣ S t = s ] v_{\pi}(s) = E[G_t|S_t=s] vπ(s)=E[GtSt=s]

更具象的理解是 :

  1. 给定Policy π \pi π ,当从状态 s 出发时,discounted return的期望值(从一个state出发,可能有多条路径到达terminal/或称多条trajectory,对所有可能的trajectory的discounted return求期望)
  2. 某个状态的 v π ( s ) v_{\pi}(s) vπ(s) 越高,说明它越有价值/越值得去(见以下例子)

Action Value

State Value 是指从一个 state 出发的 average return,而 Action Value 是指从一个 state 出发,并且 take 某个 action 的 average return。
q π ( s , a ) = E [ G t ∣ S t = s , A t = a ] q_{\pi}(s,a) = E[G_t|S_t=s, A_t =a ] qπ(s,a)=E[GtSt=s,At=a]

state value 用于选择哪个 Policy 更好,而 action value 用于选择哪个 action 更好

Action Value 和 State value 的关系:
E [ G t ∣ S t = s ] = ∑ a E [ G t ∣ S t = s , A t = a ] π ( a ∣ s ) E[G_t|S_t=s] = \sum_a E[G_t|S_t=s, A_t =a ] \pi(a|s) E[GtSt=s]=aE[GtSt=s,At=a]π(as)
即: v π ( s ) = ∑ a π ( a ∣ s ) q π ( s , a ) v_{\pi}(s) = \sum_a \pi(a|s) q_{\pi}(s,a) vπ(s)=aπ(as)qπ(s,a)
⇒ \Rightarrow State Value 实际是所有 Action Value 的 “平均”

下面开始推导贝尔曼公式

由于
G t = R t + 1 + γ R t + 2 + γ 2 R t + 3 + . . . = R t + 1 + γ ( R t + 2 + γ R t + 3 + . . . ) = R t + 1 + γ G t + 1 \begin{aligned} G_t &= R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ...\\ &= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + ...) \\ & = R_{t+1} + \gamma G_{t+1} \end{aligned} Gt=Rt+1+γRt+2+γ2Rt+3+...=Rt+1+γ(Rt+2+γRt+3+...)=Rt+1+γGt+1

⇒ v π ( s ) = E [ G t ∣ S t = s ] = E [ R t + 1 + γ G t + 1 ∣ S t = s ] = E [ R t + 1 ∣ S t = s ] + γ E [ G t + 1 ∣ S t = s ] \begin{aligned} \Rightarrow v_{\pi}(s) &= E[G_t|S_t=s]\\ &= E[R_{t+1} + \gamma G_{t+1}|S_t=s] \\ &= E[R_{t+1}|S_t=s] + \gamma E[G_{t+1}|S_t=s] \end{aligned} vπ(s)=E[GtSt=s]=E[Rt+1+γGt+1St=s]=E[Rt+1St=s]+γE[Gt+1St=s]

其中第一项为 下一步的reward的期望,可以分解为:
E [ R t + 1 ∣ S t = s ] = ∑ a E [ R t + 1 ∣ S t = s , A t = a ] π ( a ∣ s ) = ∑ a π ( a ∣ s ) ∑ r P ( r ∣ s , a ) r \begin{aligned} E[R_{t+1}|S_t=s] &= \sum_{a} E[R_{t+1}|S_t=s, A_t=a] \pi(a|s)\\ &= \sum_{a} \pi(a|s) \sum_{r} P(r|s,a)r \end{aligned} E[Rt+1St=s]=aE[Rt+1St=s,At=a]π(as)=aπ(as)rP(rs,a)r

第二项为 从下一时刻的状态为起点的 trajectory 的 discounted return,可以分解为:
E [ G t + 1 ∣ S t = s ] = ∑ s ′ E [ G t + 1 ∣ S t = s , S t + 1 = s ′ ] P ( s ′ ∣ s ) = ∑ s ′ E [ G t + 1 ∣ S t + 1 = s ′ ] P ( s ′ ∣ s ) = ∑ s ′ v π ( s ′ ) P ( s ′ ∣ s ) = ∑ s ′ v π ( s ′ ) ∑ a P ( s ′ ∣ s , a ) π ( a ∣ s ) \begin{aligned} E[G_{t+1}|S_t=s] &= \sum_{s'} E[G_{t+1}|S_t=s, S_{t+1}=s'] P(s'|s)\\ &= \sum_{s'} E[G_{t+1}|S_{t+1}=s'] P(s'|s)\\ &= \sum_{s'} v_{\pi}(s') P(s'|s)\\ &= \sum_{s'} v_{\pi}(s') \sum_{a} P(s'|s,a) \pi(a|s) \end{aligned} E[Gt+1St=s]=sE[Gt+1St=s,St+1=s]P(ss)=sE[Gt+1St+1=s]P(ss)=svπ(s)P(ss)=svπ(s)aP(ss,a)π(as)

由上得贝尔曼公式一般形式:
v π ( s ) = ∑ a π ( a ∣ s ) [ ∑ r P ( r ∣ s , a ) r + γ ∑ s ′ P ( s ′ ∣ s , a ) v π ( s ′ ) ] , ∀ s \begin{aligned} v_{\pi}(s) = \sum_{a} \pi(a|s) [\sum_{r} P(r|s,a)r + \gamma \sum_{s'} P(s'|s,a) v_{\pi}(s')], \quad \forall s \end{aligned} vπ(s)=aπ(as)[rP(rs,a)r+γsP(ss,a)vπ(s)],s
贝尔曼公式描述了 两个 state value v π ( s ) v_{\pi}(s) vπ(s) v π ( s ′ ) v_{\pi}(s') vπ(s) 的关系

同时由 state value 和 action value 的关系: v π ( s ) = ∑ a π ( a ∣ s ) q π ( s , a ) v_{\pi}(s) = \sum_a \pi(a|s) q_{\pi}(s,a) vπ(s)=aπ(as)qπ(s,a)
可得 q π ( s , a ) = ∑ r P ( r ∣ s , a ) r + γ ∑ s ′ P ( s ′ ∣ s , a ) v π ( s ′ ) q_{\pi}(s,a) = \sum_{r} P(r|s,a)r + \gamma \sum_{s'} P(s'|s,a) v_{\pi}(s') qπ(s,a)=rP(rs,a)r+γsP(ss,a)vπ(s)
即如果知道所有的State Value,反过来也可以求 Action Value

一些例子

  1. 对于policy:
    在这里插入图片描述
    由于
    π ( a = a 3 ∣ s 1 ) = 1 , π ( a ≠ a 3 ∣ s 1 ) = 0 P ( s ′ = s 3 ∣ s 1 , a 3 ) = 1 , P ( s ′ ≠ s 3 ∣ s 1 , a 3 ) = 0 P ( r = 0 ∣ s 1 , a 3 ) = 1 , P ( r ≠ 0 ∣ s 1 , a 3 ) = 0 \begin{aligned} &\pi(a = a_3|s_1) = 1, \pi(a \neq a_3|s_1) = 0 \\ &P(s'=s_3|s_1, a_3) =1, P(s'\neq s_3|s_1, a_3) =0 \\ &P(r=0|s_1, a_3) = 1, P(r \neq 0|s_1, a_3) = 0 \end{aligned} π(a=a3s1)=1,π(a=a3s1)=0P(s=s3s1,a3)=1,P(s=s3s1,a3)=0P(r=0∣s1,a3)=1,P(r=0∣s1,a3)=0

⇒ v π ( s 1 ) = ∑ a π ( a ∣ s 1 ) [ ∑ r P ( r ∣ s 1 , a ) r + γ ∑ s ′ P ( s ′ ∣ s 1 , a ) v π ( s ′ ) ] = 1 ∗ [ ∑ r P ( r ∣ s 1 , a 3 ) r + γ ∑ s ′ P ( s ′ ∣ s 1 , a 3 ) v π ( s ′ ) ] = 1 ∗ [ 1 ∗ 0 + 0 + γ ∗ 1 ∗ v π ( s 3 ) ] = 0 + γ v π ( s 3 ) \begin{aligned} \Rightarrow v_{\pi}(s_1) &= \sum_{a} \pi(a|s_1) [\sum_{r} P(r|s_1,a)r + \gamma \sum_{s'} P(s'|s_1,a) v_{\pi}(s')]\\ &= 1* [\sum_{r} P(r|s_1,a_3)r + \gamma \sum_{s'} P(s'|s_1,a_3) v_{\pi}(s')] \\ &= 1* [1*0 + 0 + \gamma * 1*v_{\pi}(s_3)]\\ &= 0 + \gamma v_{\pi}(s_3) \end{aligned} vπ(s1)=aπ(as1)[rP(rs1,a)r+γsP(ss1,a)vπ(s)]=1[rP(rs1,a3)r+γsP(ss1,a3)vπ(s)]=1[10+0+γ1vπ(s3)]=0+γvπ(s3)

同理有:
v π ( s 2 ) = 1 + γ v π ( s 4 ) v π ( s 3 ) = 1 + γ v π ( s 4 ) v π ( s 4 ) = 1 + γ v π ( s 4 ) \begin{aligned} v_{\pi}(s_2) &= 1 + \gamma v_{\pi}(s_4) \\ v_{\pi}(s_3) &= 1 + \gamma v_{\pi}(s_4) \\ v_{\pi}(s_4) &= 1 + \gamma v_{\pi}(s_4) \end{aligned} vπ(s2)vπ(s3)vπ(s4)=1+γvπ(s4)=1+γvπ(s4)=1+γvπ(s4)

解得:
v π ( s 1 ) = γ 1 − γ v π ( s 2 ) = 1 1 − γ v π ( s 3 ) = 1 1 − γ v π ( s 4 ) = 1 1 − γ \begin{aligned} v_{\pi}(s_1) &= \frac{\gamma}{1-\gamma}\\ v_{\pi}(s_2) &= \frac{1}{1-\gamma}\\ v_{\pi}(s_3) &= \frac{1}{1-\gamma}\\ v_{\pi}(s_4) &= \frac{1}{1-\gamma} \end{aligned} vπ(s1)vπ(s2)vπ(s3)vπ(s4)=1γγ=1γ1=1γ1=1γ1

⇒ v π ( s 1 ) < v π ( s 2 ) = v π ( s 3 ) = v π ( s 4 ) \Rightarrow v_{\pi}(s_1) < v_{\pi}(s_2) = v_{\pi}(s_3) =v_{\pi}(s_4) vπ(s1)<vπ(s2)=vπ(s3)=vπ(s4)
解释: s 1 s_1 s1 距离 target state 比其他 state 都要远,因此其 价值 低于其他的 state,(直观上也可以看到 s 1 s_1 s1 距离 target state,比其他的 state 都要远)


  1. 更复杂的例子
    两种好的 Policy,及其各个 state 的 state value:

两种不好的 Policy:一个全向右的 Policy 和 一个随机生成的 Policy:

可以看到

  1. 好的 Policy 的 state value,基本都为正;而不好的 Policy 的 state value 中,会有很多负数
  2. 两个不完全相同的 Policy,也可能有完全一样的 state value (因为在其出现 diff 的部分路径上,reward总和相同)

贝尔曼公式的 Matric-vector form


r π ( s i ) = ∑ a π ( a ∣ s i ) ∑ r P ( r ∣ s i , a ) r = E [ R t + 1 ∣ S t = s i ] \begin{aligned} r_{\pi}(s_i) &= \sum_{a} \pi(a|s_i) \sum_{r} P(r|s_i,a)r = E[R_{t+1}|S_t=s_i] \end{aligned} rπ(si)=aπ(asi)rP(rsi,a)r=E[Rt+1St=si]

又有: P π ( s j ∣ s i ) = ∑ a P ( s j ∣ s i , a ) π ( a ∣ s i ) P_{\pi}(s_j|s_i) = \sum_{a} P(s_j|s_i,a) \pi(a|s_i) Pπ(sjsi)=aP(sjsi,a)π(asi)

因此 v π ( s i ) = r π ( s i ) + γ ∑ s j P π ( s j ∣ s i ) v π ( s j ) v_{\pi}(s_i) = r_{\pi}(s_i) + \gamma \sum_{s_j} P_{\pi}(s_j|s_i) v_{\pi}(s_j) vπ(si)=rπ(si)+γsjPπ(sjsi)vπ(sj)
Matric-vector form: v π = r π + γ P π v π v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi} vπ=rπ+γPπvπ

例如:

上式可展开为:

贝尔曼公式的解析解

贝尔曼公式: v π = r π + γ P π v π v_{\pi} = r_{\pi} + \gamma P_{\pi} v_{\pi} vπ=rπ+γPπvπ
⇒ 解析解: v π = ( I − γ P π ) − 1 r π \Rightarrow 解析解:v_{\pi} = (I - \gamma P_{\pi})^{-1} r_{\pi} 解析解:vπ=(IγPπ)1rπ

一些理论可得的结论

  1. ( I − γ P π ) (I - \gamma P_{\pi}) (IγPπ) 是可逆的

Gershgorin 圆盘定理

A A A 是一个 n × n n \times n n×n 复矩阵,矩阵的元素为 a i j a_{ij} aij。对于每个 i i i,定义 Gershgorin 圆盘 D i D_i Di 为以 a i i a_{ii} aii 为中心,半径为矩阵第 i i i 行上非对角元素绝对值之和的圆盘。即:
D i = { z ∈ C : ∣ z − a i i ∣ ≤ R i } D_i = \{ z \in \mathbb{C} : |z - a_{ii}| \leq R_i \} Di={zC:zaiiRi}
其中 R i = ∑ j ≠ i ∣ a i j ∣ R_i = \sum_{j \neq i} |a_{ij}| Ri=j=iaij
\quad
Gershgorin 圆盘定理的结论是:矩阵 A A A 的所有特征值都位于至少一个 Gershgorin 圆盘内


Proof:

那么根据Gershgorin 圆盘定理, ( I − γ P π ) (I - \gamma P_{\pi}) (IγPπ) 的每个特征值都至少在一个
圆心为 : [ ( I − γ P π ) ] i i = 1 − γ P π ( s i ∣ s i ) 半径为 : ∑ j ≠ i ∣ [ I − γ P π ] i j ∣ = ∑ j ≠ i γ P π ( s j ∣ s i ) (因为 j ≠ i 时, I i j = 0 ) \begin{aligned} 圆心为&: [(I - \gamma P_{\pi})]_{ii} = 1-\gamma P_{\pi}(s_i | s_i)\\ 半径为&:\sum_{j \neq i} |[I-\gamma P_{\pi}]_{ij}| = \sum_{j \neq i} \gamma P_{\pi}(s_j|s_i) (因为 j \neq i 时,I_{ij} =0) \end{aligned} 圆心为半径为[(IγPπ)]ii=1γPπ(sisi)j=i[IγPπ]ij=j=iγPπ(sjsi)(因为j=i时,Iij=0
的圆当中,又有:

∑ j ≠ i γ P π ( s j ∣ s i ) + γ P π ( s i ∣ s i ) = γ < 1 \sum_{j \neq i} \gamma P_{\pi}(s_j|s_i) + \gamma P_{\pi}(s_i | s_i) = \gamma < 1 j=iγPπ(sjsi)+γPπ(sisi)=γ<1
因此:
∑ j ≠ i γ P π ( s j ∣ s i ) < 1 − γ P π ( s i ∣ s i ) \sum_{j \neq i} \gamma P_{\pi}(s_j|s_i) < 1 - \gamma P_{\pi}(s_i | s_i) j=iγPπ(sjsi)<1γPπ(sisi)
半径 < |圆心|,说明 ( I − γ P π ) (I - \gamma P_{\pi}) (IγPπ) 的 Gershgorin 圆盘都不包含原点,因此其特征值都不为零。


  1. ( I − γ P π ) − 1 > I (I - \gamma P_{\pi})^{-1} > I (IγPπ)1>I

由泰勒级数展开: 1 1 − x = 1 + x + x 2 + x 3 + . . . \frac{1}{1-x} = 1 + x + x^2 + x^3 + ... 1x1=1+x+x2+x3+...
⇒ ( I − γ P π ) − 1 = I + γ P π + γ 2 P π 2 + . . . ≥ I , ( γ > 0 ,而 P π 的值是概率,也总大于 0 ) \Rightarrow (I - \gamma P_{\pi})^{-1} = I + \gamma P_{\pi} + \gamma^2 P_{\pi}^2 + ... \geq I , (\gamma > 0, 而 P_{\pi} 的值是概率,也总大于0) (IγPπ)1=I+γPπ+γ2Pπ2+...I,(γ>0,而Pπ的值是概率,也总大于0)


贝尔曼公式的迭代解

不过实际中, ( I − γ P π ) (I - \gamma P_{\pi}) (IγPπ) 是一个很大的矩阵,求逆计算量太大,因此实际一般使用迭代式:
v k + 1 = r π + γ P π v k v_{k+1} = r_{\pi} + \gamma P_{\pi} v_{k} vk+1=rπ+γPπvk

以上迭代式成立的原因是:
v k → v π = ( I − γ P π ) − 1 r π , as  k → ∞ . v_k \to v_\pi = (I - \gamma P_\pi)^{-1} r_\pi, \text{ as } k \to \infty. vkvπ=(IγPπ)1rπ, as k∞.
证明如下:


Reference:
1.强化学习的数学原理

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com