您的位置:首页 > 科技 > 能源 > 温州百度快速排名优化_企业质量文化建设_线上平台推广方式_东莞seo黑帽培训

温州百度快速排名优化_企业质量文化建设_线上平台推广方式_东莞seo黑帽培训

2025/3/29 15:03:37 来源:https://blog.csdn.net/oscar999/article/details/146514022  浏览:    关键词:温州百度快速排名优化_企业质量文化建设_线上平台推广方式_东莞seo黑帽培训
温州百度快速排名优化_企业质量文化建设_线上平台推广方式_东莞seo黑帽培训

本篇演示在本地机器下载和加载大模型并获取AI产生的内容。简单起见,使用的大模型是Qwen2.5-0.5B-Instruct,整个模型的所有文件不到1G。

Qwen2.5-0.5B-Instruct 是阿里巴巴云 QWen 团队基于 Transformer 架构开发的轻量级指令调优语言模型,专为资源有限场景设计。

环境准备

  • OS: Windows 10
  • 开发IDE : VS Code
  • Python: 3.11

Python库安装步骤:

  1. 安装TensorFlow
pip install tensorflow

TensorFlow 是 Google 开发的开源深度学习框架,提供灵活高效的模型构建、训练与部署能力,支持多平台应用与大规模机器学习任务。

  1. 安装PyTorch
pip install torch

PyTorch 是由 Facebook 人工智能研究院(FAIR)研发的开源深度学习框架,以动态计算图、易用接口和强大的自动求导功能为核心,助力快速迭代研究与灵活模型开发。

  1. 安装accelerate
pip install accelerate

Accelerate 是 Hugging Face 推出的深度学习优化库,通过简化分布式训练、混合精度计算及硬件加速(如 GPU/TPU)的集成,显著提升模型训练效率与资源利用率。

  1. 安装modelscope

ModelScope 的 Python 库是阿里开发的一个功能强大的工具,旨在帮助开发者更方便地使用和管理机器学习模型,尤其是预训练模型。

编写代码

这里的代码是让 Qwen2.5-0.5B-Instruct 完成一个Java的闰年计算的编码任务:

from modelscope import AutoModelForCausalLM, AutoTokenizermodel_name = "Qwen/Qwen2.5-0.5B-Instruct"model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype="auto",device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)input_text = "请完成一个Java的计算闰年的函数,不需要任何解释性的内容,只需要输出代码就可以"
messages = [{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},{"role": "user", "content": input_text}
]
text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)# Use `max_new_tokens` to control the maximum output length.
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=1024, do_sample=False)[0]
# The generated_ids include prompt_ids, so we only need to decode the tokens after prompt_ids.
output_text = tokenizer.decode(generated_ids[len(model_inputs.input_ids[0]):], skip_special_tokens=True)print(f"Prompt: {input_text}\n\nGenerated text: {output_text}")
  • 代码运行首先会下载模型文件
  • 下载完成之后就会加载模型并且生成结果了。

执行后的结果如下:

问题解决

如果不是严格按照上述步骤执行的话,运行过程的可能会有如下问题,可以参照解决。

1 . cannot import name ‘AutoModelForCausalLM’ from ‘modelscope’

详细的错误信息如下:

PS D:\devworkspace\vs\ai_ency\ai_python_ency> & d:/devworkspace/vs/ai_ency/ai_python_ency/.conda/python.exe d:/devworkspace/vs/ai_ency/ai_python_ency/qwen/quickstart/Qwen2.5-Coder-0.5B.py
Traceback (most recent call last):File "d:\devworkspace\vs\ai_ency\ai_python_ency\qwen\quickstart\Qwen2.5-Coder-0.5B.py", line 1, in <module>from modelscope import AutoModelForCausalLM, AutoTokenizer
ImportError: cannot import name 'AutoModelForCausalLM' from 'modelscope' (D:\devworkspace\vs\ai_ency\ai_python_ency\.conda\Lib\site-packages\modelscope\__init__.py)    

这个问题比较难发现,错误信息的提示比较不明确, 原因其实是没有安装 TensorFlow 或者TensorFlow 的版本过低。

解决方法,安装会升级TensorFlow

2.None of PyTorch, TensorFlow >= 2.0, or Flax have been found.
PS D:\devworkspace\vs\ai_ency\ai_python_ency> & d:/devworkspace/vs/ai_ency/ai_python_ency/.conda/python.exe d:/devworkspace/vs/ai_ency/ai_python_ency/qwen/quickstart/Qwen2.5-Coder-0.5B.py
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
Traceback (most recent call last):File "d:\devworkspace\vs\ai_ency\ai_python_ency\qwen\quickstart\Qwen2.5-Coder-0.5B.py", line 2, in <module>from modelscope import AutoModelForCausalLM, AutoTokenizer
ImportError: cannot import name 'AutoModelForCausalLM' from 'modelscope' (D:\devworkspace\vs\ai_ency\ai_python_ency\.conda\Lib\site-packages\modelscope\__init__.py)   

这里同样是有 ImportError: cannot import name ‘AutoModelForCausalLM’ 的提示,但是同时会提示 None of PyTorch, 很明显就是缺少了PyTorch。

注意,安装的命令是:

pip install torch
3.ImportError: Using low_cpu_mem_usage=True, a device_map or a tp_plan requires Accelerate: pip install 'accelerate>=0.26.0'
Downloading Model from https://www.modelscope.cn to directory: D:\ai\modelscope\cache\models\Qwen\Qwen2.5-0.5B-Instruct
2025-03-25 21:11:49,487 - modelscope - WARNING - Using branch: master as version is unstable, use with caution
2025-03-25 21:11:49,961 - modelscope - INFO - Creating symbolic link [D:\ai\modelscope\cache\models\Qwen\Qwen2.5-0.5B-Instruct].
2025-03-25 21:11:49,962 - modelscope - WARNING - Failed to create symbolic link D:\ai\modelscope\cache\models\Qwen\Qwen2.5-0.5B-Instruct for D:\ai\modelscope\cache\models\Qwen\Qwen2.5-0.5B-Instruct\Qwen\Qwen2___5-0___5B-Instruct.
Traceback (most recent call last):File "d:\devworkspace\vs\ai_ency\ai_python_ency\qwen\quickstart\Qwen2.5-Coder-0.5B.py", line 6, in <module>model = AutoModelForCausalLM.from_pretrained(^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\devworkspace\vs\ai_ency\ai_python_ency\.conda\Lib\site-packages\modelscope\utils\hf_util\patcher.py", line 230, in from_pretrainedmodule_obj = module_class.from_pretrained(^^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\devworkspace\vs\ai_ency\ai_python_ency\.conda\Lib\site-packages\transformers\models\auto\auto_factory.py", line 573, in from_pretrainedreturn model_class.from_pretrained(^^^^^^^^^^^^^^^^^^^^^^^^^^^^File "D:\devworkspace\vs\ai_ency\ai_python_ency\.conda\Lib\site-packages\transformers\modeling_utils.py", line 272, in _wrapperreturn func(*args, **kwargs)^^^^^^^^^^^^^^^^^^^^^File "D:\devworkspace\vs\ai_ency\ai_python_ency\.conda\Lib\site-packages\transformers\modeling_utils.py", line 4203, in from_pretrainedraise ImportError(
ImportError: Using `low_cpu_mem_usage=True`, a `device_map` or a `tp_plan` requires Accelerate: `pip install 'accelerate>=0.26.0'`

这个提示也很明显,安装accelerate 就可以了。


版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com