您的位置:首页 > 房产 > 家装 > 成都网站设计精选柚v米科技_ui网页界面设计_网站seo公司_云优化软件

成都网站设计精选柚v米科技_ui网页界面设计_网站seo公司_云优化软件

2025/3/15 2:00:22 来源:https://blog.csdn.net/qq_36250202/article/details/143321776  浏览:    关键词:成都网站设计精选柚v米科技_ui网页界面设计_网站seo公司_云优化软件
成都网站设计精选柚v米科技_ui网页界面设计_网站seo公司_云优化软件
  1. 分组聚合

--分组集

--GROUPING SETS() 允许你定义特定的分组方式,这样你可以选择只对感兴趣的分组进行计算。

--通过手动指定不同的分组组合,你能够灵活地控制数据的聚合结果。

--与 ROLLUP 和 CUBE 不同,GROUPING SETS 不会自动生成所有子集组合,而是只生成你指定的那些。

SELECT supplier_id, rating, COUNT(*) AS total

FROM (VALUES

    ('supplier1', 'product1', 4),

    ('supplier1', 'product2', 3),

    ('supplier2', 'product3', 3),

    ('supplier2', 'product4', 4))

AS Products(supplier_id, product_id, rating)

GROUP BY GROUPING SETS ((supplier_id, rating), (supplier_id), ());

--ROLLUP

--ROLLUP() 用于执行分层级别的聚合,主要用于需要按顺序逐层汇总数据的场景。

--与 CUBE() 不同,ROLLUP() 只生成按从左到右逐步减少维度的组合,而不是所有可能的子集组合。

--例如,ROLLUP(a, b, c) 会生成 (a, b, c), (a, b), (a), 和 (),而不会像 CUBE() 那样生成所有的可能组--合。

SELECT supplier_id, rating, COUNT(*)

FROM (VALUES

    ('supplier1', 'product1', 4),

    ('supplier1', 'product2', 3),

    ('supplier2', 'product3', 3),

    ('supplier2', 'product4', 4))

AS Products(supplier_id, product_id, rating)

GROUP BY ROLLUP (supplier_id, rating);

--立方体

--CUBE() 是一种扩展的 GROUP BY 操作,允许你针对多列进行分组聚合,并生成每种可能的维度组合的聚合结果。

--如果使用了 CUBE(a, b, c),Flink 会计算出所有 a, b, c 及其子集的组合的聚合结果。

--在数据分析和 OLAP(在线分析处理)场景中,CUBE 常用来计算多维数据的统计值。

SELECT supplier_id, rating, COUNT(*)

FROM (VALUES

    ('supplier1', 'product1', 4),

    ('supplier1', 'product2', 3),

    ('supplier2', 'product3', 3),

    ('supplier2', 'product4', 4))

AS Products(supplier_id, product_id, rating)

GROUP BY CUBE (supplier_id, rating);

  1. 窗口函数TVF

--注:不支持cdc模式,因为窗口函数只支持追加模式的,不支持update与delete操作

--模拟表

CREATE TABLE bid (

    `id` string,

    bidtime TIMESTAMP(3),

    price DECIMAL(10, 2),

    item string,

    ts as bidtime,

    WATERMARK FOR ts AS ts - INTERVAL '5' SECOND,

    --proc_time AS PROCTIME(),  

    PRIMARY KEY (`id`) NOT ENFORCED

  )

WITH

  (

    'connector' = 'jdbc',

    ${36},

    'table-name' = 'bid'

  );

  --滚动窗口

  --  SELECT cast(window_start as string) AS window_start, cast(window_end as string) AS window_end , SUM(price) AS total_price

  --  FROM TABLE(

  --  TUMBLE(TABLE  bid, DESCRIPTOR(ts), INTERVAL '10' MINUTES))

  --  GROUP BY window_start, window_end;

--滑动窗口

--  SELECT cast(window_start as string) AS window_start, cast(window_end as string) AS window_end , SUM(price) AS total_price

--    FROM TABLE(

--      HOP(TABLE bid, DESCRIPTOR(ts), INTERVAL '5' MINUTES, INTERVAL '10' MINUTES))

--    GROUP BY window_start, window_end;

--累计窗口

--  SELECT  cast(window_start as string) AS window_start, cast(window_end as string) AS window_end , SUM(price) AS total_price

--    FROM TABLE(

--      CUMULATE(TABLE bid, DESCRIPTOR(ts), INTERVAL '5' MINUTES, INTERVAL '20' MINUTES))

--    GROUP BY window_start, window_end;

 --会话窗口(不支持批处理)

 SELECT window_start, window_end, item, SUM(price) AS total_price

  FROM TABLE(

      SESSION(TABLE bid PARTITION BY item, DESCRIPTOR(ts), INTERVAL '5' MINUTES))

  GROUP BY item, window_start, window_end;

  1. 窗口聚合

     

CREATE TABLE bid (

    `id` string,

    bidtime TIMESTAMP(3),

    price DECIMAL(10, 2),

    item string,

    supplier_id string,

    ts as bidtime,

    WATERMARK FOR ts AS ts - INTERVAL '5' SECOND,

    --proc_time AS PROCTIME(),  

    PRIMARY KEY (`id`) NOT ENFORCED

  )

WITH

  (

    'connector' = 'jdbc',

    ${36},

    'table-name' = 'bid'

  );

--分组集

--  SELECT  cast(window_start as string) AS window_start, cast(window_end as string) AS window_end , supplier_id, SUM(price) AS total_price

--    FROM TABLE(

--      TUMBLE(TABLE bid, DESCRIPTOR(ts), INTERVAL '10' MINUTES))

--    GROUP BY window_start, window_end, GROUPING SETS ((supplier_id), ());

--ROLLUP

--  SELECT cast(window_start as string) AS window_start, cast(window_end as string) AS window_end , supplier_id, SUM(price) AS total_price

--  FROM TABLE(

--      TUMBLE(TABLE bid, DESCRIPTOR(ts), INTERVAL '10' MINUTES))

--  GROUP BY window_start, window_end, ROLLUP (supplier_id);

--立方体

SELECT cast(window_start as string) AS window_start, cast(window_end as string) AS window_end , supplier_id, item, SUM(price) AS total_price

  FROM TABLE(

    TUMBLE(TABLE bid, DESCRIPTOR(ts), INTERVAL '10' MINUTES))

GROUP BY window_start, window_end, CUBE (supplier_id, item);

  1. Over聚合(FLINK-CDC不支持)

     

CREATE TABLE bid (

    `id` string,

    bidtime TIMESTAMP(3),

    price DECIMAL(10, 2),

    item string,

    supplier_id string,

    --proc_time AS PROCTIME(),  

    WATERMARK FOR bidtime AS bidtime - INTERVAL '5' SECOND,

    PRIMARY KEY (`id`) NOT ENFORCED

  )

WITH

  (

    'connector' = 'jdbc',

    ${36},

    'table-name' = 'bid'

  );


 

--  SELECT

--    agg_func(agg_col) OVER (

--      [PARTITION BY col1[, col2, ...]]

--      ORDER BY time_col

--      range_definition),

--    ...

--  FROM ...

--OVER 窗口需要数据是有序的。因为表没有固定的排序,所以 ORDER BY 子句是强制的。对于流式查询,Flink 目前只支持 OVER 窗口定义在升序(asc)的 时间属性 上。其他的排序不支持。

--ORDER BY:必须是时间戳列(事件时间、处理时间),只能升序

--range_definition:这个标识聚合窗口的聚合数据范围,在 Flink 中有两种指定数据范围的方式。第一种为按照行数聚合,第二种为按照时间区间聚合

--不指定 range_definition 时:Flink 默认使用 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW。

--  SELECT supplier_id, cast(bidtime as string) as bidtime, price,

--    SUM(price) OVER (

--         PARTITION BY supplier_id

--      ORDER BY bidtime

--    ) AS sum_pri

--  FROM bid

--  ;

--WINDOW 子句可用于在 SELECT 子句之外定义 OVER 窗口。它让查询可读性更好,也允许多个聚合共用一个窗口定义。

 SELECT supplier_id, cast(bidtime as string) as bidtime, price,

  SUM(price) OVER w AS sum_pri,

  avg(price)  OVER w AS avg_pri

FROM bid

WINDOW  w as (    PARTITION BY supplier_id

    ORDER BY bidtime )

;

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com