您的位置:首页 > 游戏 > 游戏 > 动漫制作app_买商标_大连网站建设费用_单页网站制作

动漫制作app_买商标_大连网站建设费用_单页网站制作

2025/2/19 9:40:26 来源:https://blog.csdn.net/m0_60890610/article/details/143314125  浏览:    关键词:动漫制作app_买商标_大连网站建设费用_单页网站制作
动漫制作app_买商标_大连网站建设费用_单页网站制作

1. Introduction

(1) time series forecasting (TSF);

(2) 回顾 “ Transformer (Vaswani et al. 2017) ” 的各领域优秀表现:

(3)  IMS vs. DMS :

→ Consequently, IMS forecasting is preferable when there is a highly-accurate single-step forecaster, and T is relatively small. In contrast, DMS forecasting generates more accurate predictions when it is hard to obtain an unbiased single-step forecasting model, or T is large. 

→ IMS 有 更小的方差 (smaller variance),但更受 误差累积效应 (error accumulation effects) 影响.

tips: Not all time series are predictable, let alone long-term forecasting (e.g., for chaotic systems). We hypothesize that long-term forecasting is only feasible for those time series with a relatively clear trend and periodicity.

(4) 历史工作导图:

2. Method

2.1 基础模型:LTSF - Linear

(1) 建模公式:

(2) 注意:LTSF - Linear 在不同变量间共享权重,且不对任何空间相关性建模

2.2 改进模型:DLinear *

2.3 NLinear:Meanwhile, to boost the performance of LTSF-Linear when there is a distribution shift in the dataset, NLinear first subtracts the input by the last value of the sequence. Then, the input goes through a linear layer, and the subtracted part is added back before making the final prediction. The subtraction and addition in NLinear are a simple normalization for the input sequence.

3. 实验结果

 4. 有用的信息:时序顺序信息 捕获能力不足,不抗噪

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com