您的位置:首页 > 游戏 > 游戏 > 微信商城小程序开发一般需要多少钱_网站后台管理系统怎么做_网站流量宝_个人怎么建立网站

微信商城小程序开发一般需要多少钱_网站后台管理系统怎么做_网站流量宝_个人怎么建立网站

2024/11/18 10:48:35 来源:https://blog.csdn.net/kjm13182345320/article/details/142445432  浏览:    关键词:微信商城小程序开发一般需要多少钱_网站后台管理系统怎么做_网站流量宝_个人怎么建立网站
微信商城小程序开发一般需要多少钱_网站后台管理系统怎么做_网站流量宝_个人怎么建立网站

2024年一区极光优化+分解+深度学习!VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测

目录

    • 2024年一区极光优化+分解+深度学习!VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.中秋献礼!中科院一区极光优化算法+分解组合对比!VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测,变分模态分解+极光优化算法优化Transformer结合门控循环单元多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);极光优化算法 Polar Lights Optimization (PLO)的元启发式算法。极光是一种独特的自然奇观,当来自太阳风的高能粒子在地磁场和地球大气层的影响下汇聚在地球两极时,就会发生极光。该成果于2024年8月最新发表在国际顶级JCR 1区、中科院 Top SCI期刊 Neurocomputing。
2.优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;
3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
先运行main1VMD,进行vmd分解;再运行main2PLOTransformerGRU,三个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。,不同的数据集效果会有差别,后面的工作就是需要调整参数。

数据集
在这里插入图片描述

参考文献
在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测(Matlab)
X = xlsread('北半球光伏数据.xlsx','C2:E296');save origin_data XL=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com