论文网址:Polarized message-passing in graph neural networks - ScienceDirect
论文代码:he-tiantian/PMP-GNNs:极化消息传递图神经网络的 Pytorch 实现,发表在 Artificial Intelligence,2024 年。 (github.com)
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
1. 省流版
1.1. 心得
2. 论文逐段精读
2.1. Abstract
2.2. Introduction
2.3. The polarized message-passing paradigm
2.3.1. Notations
2.3.2. Formulating polarized message-passing at a single layer
2.3.3. Expressiveness of polarized message-passing
2.4. Polarized message-passing graph neural networks
2.4.1. Polarized message-passing graph convolutional network
2.4.2. Polarized message-passing graph attention network
2.4.3. Polarized message-passing graph PageRank network
2.4.4. Loss function
2.4.5. Computational complexity of PMP-GNNs
2.4.6. Expressiveness of PMP-GNNs
2.5. Theoretical analysis
2.5.1. Proof of Theorem 1
2.5.2. Prood of Theorem 2
2.6. Related work
2.6.1. Graph neural networks
2.6.2. Message-passing graph neural networks
2.7. Experimental setup
2.7.1. Comparison baselines
2.7.2. Datasets and real-world analytical tasks
2.7.3. Experimental settings
2.8. Results and analysis
2.8.1. Classification performance on scientific articles
2.8.2. Clustering performance on blogs and text-based images
2.8.4. Performance in rich-text classification
2.8.5. Comparisons of similarity-, dissimilarity-, and PMP-based GNNs
2.8.6. Comparisons of learned message weights
2.9. Conclusion
3. Reference
1. 省流版
1.1. 心得
(1)好多数学证明,看起来挺严谨的样子。为什么这样的东西只值二区,我感觉挺好的。可能是创新不是特别大?但是实验属于是多麻了
2. 论文逐段精读
2.1. Abstract
①They proposed Polarized message-passing (PMP) to capture the similarity relationship between nodes
②Thus, three new GNNs were derived, PMP graph convolutional network (PMP-GCN), PMP graph attention network (PMP-GAT), and PMP graph PageRank network (PMP-GPN)
③They verified them on 12 real datasets based 5 tasks
2.2. Introduction
①Current message-passing graph neural networks (MPGNNs) consider the SIMILARITY more, thus the authors want to contain the DISSIMILARITY
②⭐They decomposed traditional adjacency matrix to 2 matrices, the SIMILARITY matrix and the DISSIMILARITY matrix
③⭐They combine the two sim matrices to new sparse matrix, which is the normalized product of the two sim matrices(咦~感觉这样不能真正实现复合?反而揉在一起了,怎么体现极化呢)
negate vt.否定;否认;使无效;取消
2.3. The polarized message-passing paradigm
2.3.1. Notations
①Graph is represented as , where each graph contains nodes and edges
② denotes the input node feature matrix, is the node feature matrix of the subsequent convolved,
③each node belongs to a class of
④ denotes one-hop neighbor
⑤ denotes the adjacency matrix
⑥ denotes the learnable weight matrix
⑦ denotes the latent positions at the -th layer
2.3.2. Formulating polarized message-passing at a single layer
①Node correlations matrix :
where the subscript denotes the -th row vector, is the concatenation symbol, and are the learnable weight vectors. (C= A_{ij}*{[a,1]*[1,2f] + [N,p]*[p,p]*[p,N]},感觉上这里A是一个二值化数,难道这里会强行让f=1/2N吗)
②Node uncorrelated matrix :
where is the learnable parameter
③Construction of integrated polarization information:
where is an appropriately function leveraging to generate the weights for computing messages from neighbors, denotes learnable positive parameter, denotes learnable positive irrational
④Polarized message-passing (PMP):
2.3.3. Expressiveness of polarized message-passing
①大概证明了一下为什么他们提出来的极化消息传递更好,如有需要可以参考原文
2.4. Polarized message-passing graph neural networks
2.4.1. Polarized message-passing graph convolutional network
①PMP-GCN:
2.4.2. Polarized message-passing graph attention network
①PMP-GAT:
2.4.3. Polarized message-passing graph PageRank network
①PMP-GPN:
2.4.4. Loss function
①Loss function contains task-specific loss and latent-position loss:
where denotes the Laplacian matrix of
2.4.5. Computational complexity of PMP-GNNs
①Mapping computational complexity:
②Computing and :
③Representation learning:
④Layer complexity of PMP-GCN and PMP-GAT:
⑤Layer complexity of PMP-GPN:
2.4.6. Expressiveness of PMP-GNNs
①作者证明他们的PMP可以通过Weisfeiler-Lehman 检验,并且说所有MPGNN表达性的上限是WL
——————————————以下证明暂略——————————————
2.5. Theoretical analysis
2.5.1. Proof of Theorem 1
2.5.2. Prood of Theorem 2
(1)Schematic methodology to complete the proof of Theorem 2
(2)The equivalence between the PMP-GCN layer and the 1-WL test
(3)The equivalence between the PMP-GAT layer and the 1-WL test
(4)The equivalence between the PMP-GPN layer and the 1-WL test
2.6. Related work
2.6.1. Graph neural networks
①GNN can be used to scientific document classification, coauthor analysis, conversation generation, social community detection, and text classification
2.6.2. Message-passing graph neural networks
①List some strategies
2.7. Experimental setup
2.7.1. Comparison baselines
①Compared model: a) GNN: GCN, MoNer, GraphSAGE, ARMA; b) Attention based GNN: GAT, GATv2, HardGAT, MAGNA; c) Diffused (PageRank based) GNN: JKNet, APPNP, SGC, GPR
2.7.2. Datasets and real-world analytical tasks
①Introduced each dataset:
2.7.3. Experimental settings
①Specifically list the parameters in compared models
②Hidden layer: 35 for PMP-GCN, 64 for PMP-GAT and PMP-GPN
③Dropout rate: 0.75 for PMP-GCN, 0.6 for PMP-GAT, 0.5 for PMP-GPN
④Learning rate: 0.01 for PMP-GCN and PMP-GPN, 0.005 for PMP-GAT
⑤Attention head: only 1 for PMP-GAT
⑥Optimizer: Adam
⑦Epoch: 10
⑧Performance: average
⑨Introduced the distribution of train/val/test set
2.8. Results and analysis
2.8.1. Classification performance on scientific articles
①Comparison on traditional GNN:
②Comparison on attention based GNN:
③Comparison on PageRank based GNN:
2.8.2. Clustering performance on blogs and text-based images
①Comparison on traditional GNN:
②Comparison on attention based GNN:
③Comparison on PageRank based GNN:
2.8.3. Analytical performance in coauthor graphs
①Comparison on traditional GNN:
②Comparison on attention based GNN:
③Comparison on PageRank based GNN:
2.8.4. Performance in rich-text classification
①Comparison on traditional GNN:
②Comparison on attention based GNN:
③Comparison on PageRank based GNN:
2.8.5. Comparisons of similarity-, dissimilarity-, and PMP-based GNNs
①Ablation studies on 3 types of GNN:
2.8.6. Comparisons of learned message weights
①Learned message weights blation and accumulative distribution of normalized neighbor distances regarding node features and graph structure:
2.9. Conclusion
....怎么做了两三百个实验啊
3. Reference
He, T. et al. (2024) 'Polarized message-passing in graph neural networks', Artificial Intelligence, 331. doi: Redirecting