句柄 | handle
int open(const char* pathname,int flags);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
int close(int fd);
只要写过应用程序代码操作过文件不会陌生这几个函数,文件操作的几个关键步骤嘛,跟把大象装冰箱分几步一样.先得把冰箱门打开,再把大象放进去,再关上冰箱门.其中最重要的一个参数就是fd
,应用程序所有对文件的操作都基于它.fd
可称为文件描述符,或者叫文件句柄(handle),个人更愿意称后者. 因为更形象,handle
英文有手柄的意思,跟开门一样,握住手柄才能开门,手柄是进门关门的抓手.映射到文件系统,fd
是应用层出入内核层的抓手.句柄是一个数字编号, open | creat
去申请这个编号,内核会创建文件相关的一系列对象,返回编号,后续通过编号就可以操作这些对象.原理就是这么的简单,本篇将从fd
入手,跟踪文件操作的整个过程.
请记住,鸿蒙内核中,在不同的层面会有两种文件句柄:
- 系统文件句柄(
sysfd
),由内核统一管理,和进程文件句柄形成映射关系,一个sysfd
可以被多个profd
映射,也就是说打开一个文件只会占用一个sysfd
,但可以占用多个profd
,即一个文件被多个进程打开. - 进程文件句柄(
profd
),由进程管理的叫进程文件句柄,内核对不同进程中的fd
进行隔离,即进程只能访问本进程的fd
.举例说明之间的关系:
文件 sysfd profd吃个桃桃.mp4 10 13(A进程)吃个桃桃.mp4 10 3(B进程)容嬷嬷被冤枉.txt 12 3(A进程)容嬷嬷被冤枉.txt 12 3(C进程)
进程文件句柄
在鸿蒙一个进程默认最多可以有256
个fd
,即最多可打开256个文件.文件也是资源的一种,系列篇多次说过进程是管理资源的,所以在进程控制块中能看到文件的影子files_struct
. files_struct
可理解为进程的文件管理器,里面只放和本进程相关的文件,线程则共享这些文件.另外子进程也会拷贝一份父进程的files_struct
到自己的files_struct
上,在父子进程篇中也讲过fork
的本质就是拷贝资源,其中就包括了文件内容.
//进程控制块
typedef struct ProcessCB {//..#ifdef LOSCFG_FS_VFSstruct files_struct *files; /**< Files held by the process */ //进程所持有的所有文件,注者称之为进程的文件管理器#endif //每个进程都有属于自己的文件管理器,记录对文件的操作. 注意:一个文件可以被多个进程操作
} LosProcessCB;
struct files_struct {//进程文件表结构体int count; //持有的文件数量struct fd_table_s *fdt; //持有的文件表unsigned int file_lock; //文件互斥锁unsigned int next_fd; //下一个fd
#ifdef VFS_USING_WORKDIRspinlock_t workdir_lock; //工作区目录自旋锁char workdir[PATH_MAX]; //工作区路径,最大 256个字符
#endif
};
fd_table_s
为files_struct
的成员,负责记录所有进程文件句柄的信息,个人觉得鸿蒙这块的实现有点乱,没有封装好.
struct fd_table_s {//进程fd表结构体unsigned int max_fds;//进程的文件描述符最多有256个struct file_table_s *ft_fds; /* process fd array associate with system fd *///系统分配给进程的FD数组 ,fd 默认是 -1fd_set *proc_fds; //进程fd管理位,用bitmap管理FD使用情况,默认打开了 0,1,2 (stdin,stdout,stderr)fd_set *cloexec_fds;sem_t ft_sem; /* manage access to the file table */ //管理对文件表的访问的信号量
};
file_table_s
记录进程fd
和系统fd
之间的绑定或者说映射关系
struct file_table_s {//进程fd <--> 系统fd绑定intptr_t sysFd; /* system fd associate with the tg_filelist index */
};
fd_set
实现了进程fd
按位图管理,系列操作为 FD_SET
,FD_ISSET
,FD_CLR
,FD_ZERO
除以8
是因为 char
类型占8
个bit
位.请尝试去理解下按位操作的具体实现.
typedef struct fd_set
{unsigned char fd_bits [(FD_SETSIZE+7)/8];
} fd_set;
#define FD_SET(n, p) FDSETSAFESET(n, (p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] = (u8_t)((p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] | (1 << (((n)-LWIP_SOCKET_OFFSET) & 7))))
#define FD_CLR(n, p) FDSETSAFESET(n, (p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] = (u8_t)((p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] & ~(1 << (((n)-LWIP_SOCKET_OFFSET) & 7))))
#define FD_ISSET(n,p) FDSETSAFEGET(n, (p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] & (1 << (((n)-LWIP_SOCKET_OFFSET) & 7)))
#define FD_ZERO(p) memset((void*)(p), 0, sizeof(*(p)))
vfs_procfd.c 为进程文件句柄实现文件,每个进程的 0
,1
,2
号 fd
是由系统占用并不参与分配,即为大家熟知的:
STDIN_FILENO(fd = 0)
标准输入 接收键盘的输入STDOUT_FILENO(fd = 1)
标准输出 向屏幕输出STDERR_FILENO(fd = 2)
标准错误 向屏幕输出
/* minFd should be a positive number,and 0,1,2 had be distributed to stdin,stdout,stderr */if (minFd < MIN_START_FD) {minFd = MIN_START_FD;}
//分配进程文件句柄
static int AssignProcessFd(const struct fd_table_s *fdt, int minFd)
{if (fdt == NULL) {return VFS_ERROR;}if (minFd >= fdt->max_fds) {set_errno(EINVAL);return VFS_ERROR;}//从表中搜索未使用的 fd/* search unused fd from table */for (int i = minFd; i < fdt->max_fds; i++) {if (!FD_ISSET(i, fdt->proc_fds)) {return i;}}set_errno(EMFILE);return VFS_ERROR;
}
//释放进程文件句柄
void FreeProcessFd(int procFd)
{struct fd_table_s *fdt = GetFdTable();if (!IsValidProcessFd(fdt, procFd)) {return;}FileTableLock(fdt);FD_CLR(procFd, fdt->proc_fds); //相应位清0FD_CLR(procFd, fdt->cloexec_fds);fdt->ft_fds[procFd].sysFd = -1; //解绑系统文件描述符FileTableUnLock(fdt);
}
- 分配和释放的算法很简单,由位图的相关操作完成.
fdt->ft_fds[i].sysFd
中的i
代表进程的fd
,-1
代表没有和系统文件句柄绑定.- 进程文件句柄和系统文件句柄的意义和关系在 (VFS篇)中已有说明,此处不再赘述,请自行前往翻看.
系统文件句柄
系统文件句柄的实现类似,但它并不在鸿蒙内核项目中,而是在NuttX
项目的 fs_files.c 中, 因鸿蒙内核项目中使用了其他第三方的项目,所以需要加进来一起研究才能看明白鸿蒙整个内核的完整实现.具体涉及的子系统仓库如下:
- 子系统注解仓库
在给鸿蒙内核源码加注过程中发现仅仅注解内核仓库还不够,因为它关联了其他子系统,若对这些子系统不了解是很难完整的注解鸿蒙内核,所以也对这些关联仓库进行了部分注解,这些仓库包括:
- 同样由位图来管理系统文件句柄,具体相关操作如下
//用 bitmap 数组来记录文件描述符的分配情况,一位代表一个SYS FD
static unsigned int bitmap[CONFIG_NFILE_DESCRIPTORS / 32 + 1] = {0};
//设置指定位值为 1
static void set_bit(int i, void *addr)
{unsigned int tem = (unsigned int)i >> 5; /* Get the bitmap subscript */unsigned int *addri = (unsigned int *)addr + tem;unsigned int old = *addri;old = old | (1UL << ((unsigned int)i & 0x1f)); /* set the new map bit */*addri = old;
}
//获取指定位,看是否已经被分配
bool get_bit(int i)
{unsigned int *p = NULL;unsigned int mask;p = ((unsigned int *)bitmap) + (i >> 5); /* Gets the location in the bitmap */mask = 1 << (i & 0x1f); /* Gets the mask for the current bit int bitmap */if (!(~(*p) & mask)){return true;}return false;
}
tg_filelist
是全局系统文件列表,统一管理系统fd
,其中的关键结构体是file
,这才是内核对文件对象描述的实体,是本篇最重要的内容.
#if CONFIG_NFILE_DESCRIPTORS > 0struct filelist tg_filelist; //全局统一管理系统文件句柄#endifstruct filelist{sem_t fl_sem; /* Manage access to the file list */struct file fl_files[CONFIG_NFILE_DESCRIPTORS];};struct file{unsigned int f_magicnum; /* file magic number */int f_oflags; /* Open mode flags */struct Vnode *f_vnode; /* Driver interface */loff_t f_pos; /* File position */unsigned long f_refcount; /* reference count */char *f_path; /* File fullpath */void *f_priv; /* Per file driver private data */const char *f_relpath; /* realpath */struct page_mapping *f_mapping; /* mapping file to memory */void *f_dir; /* DIR struct for iterate the directory if open a directory */const struct file_operations_vfs *ops;int fd;};
* `f_magicnum`魔法数字,每种文件格式不同魔法数字不同,`gif`是`47 49 46 38`,`png`是`89 50 4e 47`
* `f_oflags` 操作文件的权限模式,读/写/执行
* `f_vnode` 对应的`vnode`
* `f_pos` 记录操作文件的当前位置
* `f_refcount` 文件被引用的次数,即文件被所有进程打开的次数.
* `f_priv` 文件的私有数据
* `f_relpath` 记录文件的真实路径
* `f_mapping` 记录文件和内存的映射关系,这个在文件映射篇中有详细介绍.
* `ops` 对文件内容的操作函数
* `fd` 文件句柄编号,系统文件句柄是唯一的,一直到申请完为止,当`f_refcount`为0时,内核将回收`fd`.
open | creat | 申请文件句柄
通过文件路径名pathname
获取文件句柄,鸿蒙实现过程如下
SysOpen //系统调用AllocProcessFd //分配进程文件句柄do_open //向底层打开文件fp_open //vnode 层操作files_allocatefilep->ops->open(filep) //调用各文件系统的函数指针AssociateSystemFd //绑定系统文件句柄
建一个file
对象,i
即为分配到的系统文件句柄.
//创建系统文件对象及分配句柄
int files_allocate(struct Vnode *vnode_ptr, int oflags, off_t pos, void *priv, int minfd)//...while (i < CONFIG_NFILE_DESCRIPTORS)//系统描述符{p = ((unsigned int *)bitmap) + (i >> 5); /* Gets the location in the bitmap */mask = 1 << (i & 0x1f); /* Gets the mask for the current bit int bitmap */if ((~(*p) & mask))//该位可用于分配{set_bit(i, bitmap);//占用该位list->fl_files[i].f_oflags = oflags;list->fl_files[i].f_pos = pos;//偏移位list->fl_files[i].f_vnode = vnode_ptr;//vnodelist->fl_files[i].f_priv = priv;//私有数据list->fl_files[i].f_refcount = 1; //引用数默认为1list->fl_files[i].f_mapping = NULL;//暂无映射list->fl_files[i].f_dir = NULL;//暂无目录list->fl_files[i].f_magicnum = files_magic_generate();//魔法数字process_files = OsCurrProcessGet()->files;//获取当前进程文件管理器return (int)i;}i++;}// ...
}
read | write
SysRead //系统调用|读文件:从文件中读取nbytes长度的内容到buf中(用户空间)fd = GetAssociatedSystemFd(fd); //通过进程fd获取系统fdread(fd, buf, nbytes); //调用系统fd层的读函数fs_getfilep(fd, &filep); //通过系统fd获取file对象file_read(filep, buf, nbytes) //调用file层的读文件ret = (int)filep->ops->read(filep, (char *)buf, (size_t)nbytes);//调用具体文件系统的读操作
SysWrite //系统调用|写文件:将buf中(用户空间)nbytes长度的内容写到文件中fd = GetAssociatedSystemFd(fd); //通过进程fd获取系统fdwrite(sysfd, buf, nbytes); //调用系统fd层的写函数fs_getfilep(fd, &filep); //通过系统fd获取file对象file_seek64file_write(filep, buf, nbytes);//调用file层的写文件ret = filep->ops->write(filep, (const char *)buf, nbytes);//调用具体文件系统的写操作
此处仅给出 file_write 的实现
ssize_t file_write(struct file *filep, const void *buf, size_t nbytes)
{int ret;int err;if (buf == NULL){err = EFAULT;goto errout;}/* Was this file opened for write access? */if ((((unsigned int)(filep->f_oflags)) & O_ACCMODE) == O_RDONLY){err = EACCES;goto errout;}/* Is a driver registered? Does it support the write method? */if (!filep->ops || !filep->ops->write){err = EBADF;goto errout;}/* Yes, then let the driver perform the write */ret = filep->ops->write(filep, (const char *)buf, nbytes);if (ret < 0){err = -ret;goto errout;}return ret;errout:set_errno(err);return VFS_ERROR;
}
close
//关闭文件句柄
int SysClose(int fd)
{int ret;/* Process fd convert to system global fd */int sysfd = DisassociateProcessFd(fd);//先解除关联ret = close(sysfd);//关闭文件,个人认为应该先 close - > DisassociateProcessFd if (ret < 0) {//关闭失败时AssociateSystemFd(fd, sysfd);//继续关联return -get_errno();}FreeProcessFd(fd);//释放进程fdreturn ret;
}
- 解除进程
fd
和系统fd
的绑定关系 close
时会有个判断,这个文件的引用数是否为0
,只有为0
才会真正的执行_files_close
int files_close_internal(int fd, LosProcessCB *processCB){//...list->fl_files[fd].f_refcount--;if (list->fl_files[fd].f_refcount == 0){#ifdef LOSCFG_KERNEL_VMdec_mapping_nolock(filep->f_mapping);#endifret = _files_close(&list->fl_files[fd]);if (ret == OK){clear_bit(fd, bitmap);}}// ... }static int _files_close(struct file *filep){struct Vnode *vnode = filep->f_vnode;int ret = OK;/* Check if the struct file is open (i.e., assigned an vnode) */if (filep->f_oflags & O_DIRECTORY){ret = closedir(filep->f_dir);if (ret != OK){return ret;}}else{/* Close the file, driver, or mountpoint. */if (filep->ops && filep->ops->close){/* Perform the close operation */ret = filep->ops->close(filep);if (ret != OK){return ret;}}VnodeHold();vnode->useCount--;/* Block char device is removed when close */if (vnode->type == VNODE_TYPE_BCHR){ret = VnodeFree(vnode);if (ret < 0){PRINTK("Removing bchar device %s failed\n", filep->f_path);}}VnodeDrop();}/* Release the path of file */free(filep->f_path);/* Release the file descriptor */filep->f_magicnum = 0;filep->f_oflags = 0;filep->f_pos = 0;filep->f_path = NULL;filep->f_priv = NULL;filep->f_vnode = NULL;filep->f_refcount = 0;filep->f_mapping = NULL;filep->f_dir = NULL;return ret;}
- 最后
FreeProcessFd
负责释放该文件在进程层面占用的资源
经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?
为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。
《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN
如何快速入门?
1.基本概念
2.构建第一个ArkTS应用
3.……
开发基础知识:
1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……
基于ArkTS 开发
1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……
鸿蒙开发面试真题(含参考答案):https://gitcode.com/HarmonyOS_MN
OpenHarmony 开发环境搭建
《OpenHarmony源码解析》:https://gitcode.com/HarmonyOS_MN
- 搭建开发环境
- Windows 开发环境的搭建
- Ubuntu 开发环境搭建
- Linux 与 Windows 之间的文件共享
- ……
- 系统架构分析
- 构建子系统
- 启动流程
- 子系统
- 分布式任务调度子系统
- 分布式通信子系统
- 驱动子系统
- ……
OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN
写在最后
如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
- 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
- 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
- 想要获取更多完整鸿蒙最新学习资源,请移步前往