1. resnet分类器训练
import torch import torchvision from torchvision import transforms from torch.utils.data import random_split import torch.nn as nn import torch.optim as optim from torchvision.models import resnet50# Define the transformation transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])# Load the dataset data = torchvision.datasets.ImageFolder(root=r"D:\train_model\train_data_set", transform=transform)classes_set = data.classes # 保存类别信息到 classes.txt with open('classes.txt', 'w') as f:for class_name in classes_set:f.write(class_name + '\n') # Split the data into train and test sets train_size = int(0.8 * len(data)) test_size = len(data) - train_size train_data, test_data = random_split(data, [train_size, test_size])# Optionally, you can load the train and test data into data loaders train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=False)# Define the model model = resnet50(pretrained=True)# Replace the last layer num_features = model.fc.in_features model.fc = nn.Linear(num_features, len(classes_set)) # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# Move the model to the device device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) # Define the number of epochs num_epochs = 10# Train the model for epoch in range(num_epochs):# Train the model on the training setmodel.train()train_loss = 0.0for i, (inputs, labels) in enumerate(train_loader):# Move the data to the deviceinputs = inputs.to(device)# inputs = inputs.float()labels = labels.to(device)# labels = labels.long()# Zero the parameter gradientsoptimizer.zero_grad()# Forward + backward + optimizeoutputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()# Update the training losstrain_loss += loss.item() * inputs.size(0)# Evaluate the model on the test setmodel.eval()test_loss = 0.0test_acc = 0.0with torch.no_grad():for i, (inputs, labels) in enumerate(test_loader):# Move the data to the deviceinputs = inputs.to(device)labels = labels.to(device)# Forwardoutputs = model(inputs)loss = criterion(outputs, labels)# Update the test loss and accuracytest_loss += loss.item() * inputs.size(0)_, preds = torch.max(outputs, 1)test_acc += torch.sum(preds == labels.data)# Print the training and test loss and accuracytrain_loss /= len(train_data)test_loss /= len(test_data)test_acc = test_acc.double() / len(test_data)print(f"Epoch [{epoch + 1}/{num_epochs}] Train Loss: {train_loss:.4f} Test Loss: {test_loss:.4f} Test Acc: {test_acc:.4f}")# 保存模型参数 torch.save(model.state_dict(), './model/trained_model.pth')