您的位置:首页 > 娱乐 > 八卦 > 制作网页学什么_托管网站_朝阳seo排名_微博推广怎么做

制作网页学什么_托管网站_朝阳seo排名_微博推广怎么做

2024/12/21 2:23:11 来源:https://blog.csdn.net/m0_65013257/article/details/142170042  浏览:    关键词:制作网页学什么_托管网站_朝阳seo排名_微博推广怎么做
制作网页学什么_托管网站_朝阳seo排名_微博推广怎么做

SQL 定长窗口(Sliding Window)是一种使用窗口函数来处理一段固定范围内的数据。这种方式可以对一定范围内的数据进行聚合或分析,并且窗口会随着数据的行逐步滑动。

在 SQL 中,窗口函数常与 OVER() 子句一起使用,定义一个窗口的大小和范围。定长窗口可以根据行数时间范围进行滑动,下面我将详细讲解定长窗口的语法及用法,并举例说明。


1. 基本语法

窗口函数的语法

<window_function> OVER ([PARTITION BY partition_column][ORDER BY order_column][ROWS or RANGE BETWEEN <frame_start> AND <frame_end>]
)
  • <window_function>:如 SUM(), AVG(), COUNT(), ROW_NUMBER(), RANK() 等。
  • PARTITION BY:用于将数据按照某一列分组(类似 GROUP BY 的作用)。
  • ORDER BY:用于定义窗口中的排序规则,窗口会基于这个顺序进行计算。
  • ROWS or RANGE BETWEEN:用于定义窗口的范围。
    • ROWS:基于行数定义窗口长度。
    • RANGE:基于值(如时间、数值)定义窗口长度。
    • BETWEEN <frame_start> AND <frame_end>:指定窗口的起点和终点。

2. 定长窗口的类型

A. 基于行数的定长窗口
  • 使用 ROWS BETWEEN 语法,窗口根据行数定义长度。例如,当前行和前 4 行构成一个 5 行的窗口。

示例:计算当前行与前 4 行的销售总和(包括当前行)。

SELECTorder_id,order_amount,SUM(order_amount) OVER (ORDER BY order_id ROWS BETWEEN 4 PRECEDING (AND CURRENT ROW)-- AND CURRENT ROW可以省略) AS rolling_sum
FROMOrders;
  • ROWS BETWEEN 4 PRECEDING AND CURRENT ROW:表示当前行和前 4 行一起计算(共 5 行的数据)。
B. 基于时间范围的定长窗口
  • 使用 RANGE BETWEEN 语法,窗口根据时间范围定义长度。例如,计算当前行及前 7 天的数据。

示例:计算过去 7 天的销售总和(包括当天)。

SELECTorder_date,order_amount,SUM(order_amount) OVER (ORDER BY order_date RANGE BETWEEN INTERVAL 7 DAY PRECEDING (AND CURRENT ROW)-- AND CURRENT ROW可以省略) AS rolling_sum
FROMOrders;
  • RANGE BETWEEN INTERVAL 7 DAY PRECEDING AND CURRENT ROW:表示从当前行往前 7 天的范围,计算销售额总和。

3. 详细语法解析

A. PARTITION BY
  • PARTITION BY 用于将数据划分为多个窗口,每个分区独立计算窗口函数结果。类似于 GROUP BY,但它不会聚合数据,只是划分数据。

示例:根据 region 划分不同的分区,并计算每个分区内前 4 行的滚动平均值。

SELECTregion,order_id,order_amount,AVG(order_amount) OVER (PARTITION BY region ORDER BY order_id ROWS BETWEEN 4 PRECEDING AND CURRENT ROW -- AND CURRENT ROW可以省略) AS rolling_avg
FROMOrders;
  • PARTITION BY region:将数据按照 region 列进行分区,每个分区单独计算滚动平均值。
B. ORDER BY
  • ORDER BY 用于定义窗口的排序方式。窗口函数会按照指定列的顺序滑动窗口,逐行计算。

示例:按 order_date 排序,并计算当前行和前 4 行的销售总和。

SELECTorder_id,order_date,order_amount,SUM(order_amount) OVER (ORDER BY order_date ROWS BETWEEN 4 PRECEDING AND CURRENT ROW -- AND CURRENT ROW可以省略) AS rolling_sum
FROMOrders;
C. ROWS BETWEEN 和 RANGE BETWEEN
  • ROWS BETWEEN:基于行的偏移量定义窗口的范围。例如,ROWS BETWEEN 4 PRECEDING AND CURRENT ROW 表示当前行及之前 4 行的数据构成窗口。
  • RANGE BETWEEN:基于值或时间间隔定义窗口的范围。例如,RANGE BETWEEN INTERVAL 7 DAY PRECEDING AND CURRENT ROW 表示过去 7 天(包括当天)构成窗口。

4. 举例说明

示例 1:基于行数的滚动总和(滑动窗口)

计算每个订单及其前 2 行的滚动总和。

SELECTorder_id,order_amount,SUM(order_amount) OVER (ORDER BY order_id ROWS BETWEEN 2 PRECEDING AND CURRENT ROW -- AND CURRENT ROW可以省略) AS rolling_sum
FROMOrders;

结果:

order_id

order_amount

rolling_sum

1

100

100

2

200

300

3

150

450

4

250

600

示例 2:基于时间的滚动平均值

计算每一天及其前 7 天的销售平均值。

SELECTorder_date,order_amount,AVG(order_amount) OVER (ORDER BY order_date RANGE BETWEEN INTERVAL 7 DAY PRECEDING AND CURRENT ROW -- AND CURRENT ROW可以省略) AS rolling_avg
FROMOrders;

结果:

order_date

order_amount

rolling_avg

2023-01-01

100

100

2023-01-02

200

150

2023-01-03

150

150

2023-01-08

250

175

示例 3:分区内计算滚动总和

region 分区,并计算每个分区内订单的滚动总和。

SELECTregion,order_id,order_amount,SUM(order_amount) OVER (PARTITION BY region ORDER BY order_id ROWS BETWEEN 2 PRECEDING AND CURRENT ROW -- AND CURRENT ROW可以省略) AS rolling_sum
FROMOrders;

结果:

region

order_id

order_amount

rolling_sum

North

1

100

100

North

2

200

300

North

3

150

450

South

4

250

250

South

5

300

550


结束点的几种方式:

1. 指定窗口结束点为当前行之后的第 N 行 (N FOLLOWING)

例如:计算当前行和接下来 2 行的总和。

SELECTorder_id,order_amount,SUM(order_amount) OVER (ORDER BY order_id ROWS BETWEEN CURRENT ROW AND 2 FOLLOWING) AS rolling_sum
FROMOrders;
  • ROWS BETWEEN CURRENT ROW AND 2 FOLLOWING:从当前行到接下来的第 2 行,共 3 行的数据。
2. 指定窗口结束点为无界后 (UNBOUNDED FOLLOWING)

这个语法用于定义从当前行开始,一直扩展到表的最后一行。

SELECTorder_id,order_amount,SUM(order_amount) OVER (ORDER BY order_id ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS total_sum
FROMOrders;
  • ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING:从当前行到表的最后一行。
3. 指定窗口结束点为无界之前 (UNBOUNDED PRECEDING)

用于定义从第一行开始,一直到当前行。

SELECTorder_id,order_amount,SUM(order_amount) OVER (ORDER BY order_id ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_sum
FROMOrders;
  • ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW:从第一行到当前行。
4. 指定窗口结束点为 N 行之前 (N PRECEDING)

例如:计算当前行之前的 5 行数据。

SELECTorder_id,order_amount,SUM(order_amount) OVER (ORDER BY order_id ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING) AS prev_sum
FROMOrders;
  • ROWS BETWEEN 5 PRECEDING AND 1 PRECEDING:从当前行之前的第 5 行到之前的第 1 行(不包含当前行)。

总结:

  • 定长窗口 可以基于行数时间范围定义,适用于滚动总和、滚动平均等场景。
  • 使用 ROWS BETWEEN 可以精确控制行数的范围,使用 RANGE BETWEEN 可以基于数值或时间范围定义窗口。
  • PARTITION BYORDER BY 是常见的窗口函数参数,用于分区和排序数据。

这些功能使得 SQL 能够轻松处理数据的复杂分析任务。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com