示例数据
假设我们的 test
表有以下数据:
id | date |
---|---|
1 | 2023-10-01 08:00:00 |
1 | 2023-10-02 09:00:00 |
1 | 2023-10-03 10:00:00 |
1 | 2023-10-05 11:00:00 |
2 | 2023-10-01 10:00:00 |
2 | 2023-10-02 12:00:00 |
2 | 2023-10-03 14:00:00 |
2 | 2023-10-04 15:00:00 |
3 | 2023-10-01 16:00:00 |
3 | 2023-10-02 16:00:00 |
3 | 2023-10-03 16:00:00 |
3 | 2023-10-04 16:00:00 |
第一步:去重并提取日期
SELECT id,SUBSTR(date, 1, 10) AS date1
FROM test
GROUP BY id, SUBSTR(date, 1, 10);
结果(表 table1
):
id | date1 |
---|---|
1 | 2023-10-01 |
1 | 2023-10-02 |
1 | 2023-10-03 |
1 | 2023-10-05 |
2 | 2023-10-01 |
2 | 2023-10-02 |
2 | 2023-10-03 |
2 | 2023-10-04 |
3 | 2023-10-01 |
3 | 2023-10-02 |
3 | 2023-10-03 |
3 | 2023-10-04 |
第二步:为每个用户和日期生成序列号
SELECT id,date1,DATE_SUB(date1, INTERVAL ROW_NUMBER() OVER (PARTITION BY id ORDER BY date1) DAY) AS date2
FROM (SELECT id,SUBSTR(date, 1, 10) AS date1FROM testGROUP BY id, SUBSTR(date, 1, 10)
) AS table1; -- 使用 'table1' 作为别名
结果(表 table2
):
id | date1 | date2 |
---|---|---|
1 | 2023-10-01 | 2023-10-01 |
1 | 2023-10-02 | 2023-10-01 |
1 | 2023-10-03 | 2023-10-01 |
1 | 2023-10-05 | 2023-10-04 |
2 | 2023-10-01 | 2023-10-01 |
2 | 2023-10-02 | 2023-10-01 |
2 | 2023-10-03 | 2023-10-01 |
2 | 2023-10-04 | 2023-10-01 |
3 | 2023-10-01 | 2023-10-01 |
3 | 2023-10-02 | 2023-10-01 |
3 | 2023-10-03 | 2023-10-01 |
3 | 2023-10-04 | 2023-10-01 |
第三步:统计每个用户的最大连续登录天数
SELECT id, MAX(day_cnt) AS max_day_cnt
FROM (SELECT id,date2,COUNT(*) AS day_cntFROM (SELECT id,date1,DATE_SUB(date1, INTERVAL ROW_NUMBER() OVER (PARTITION BY id ORDER BY date1) DAY) AS date2FROM (SELECT id,SUBSTR(date, 1, 10) AS date1FROM testGROUP BY id, SUBSTR(date, 1, 10)) AS table1) AS table2GROUP BY id, date2
) AS final_table
GROUP BY id
ORDER BY max_day_cnt DESC
LIMIT 1;
结果(如果求的是用户天数而非用户则无需ORDER BY):
id | max_day_cnt |
---|---|
3 | 4 |
完整步骤解析
-
去重提取日期:
- 查询:提取每个用户的唯一登录日期。
- 结果表
table1
:显示每个用户的唯一日期。
-
为每个用户生成序列号:
- 查询:为每个用户的日期生成序号,并计算
date2
。 - 结果表
table2
:显示用户的日期和对应的date2
。
- 查询:为每个用户的日期生成序号,并计算
-
统计用户最大连续登录天数:
- 查询:根据
date2
统计每个用户的连续登录天数,并通过MAX()
函数获取每个用户的最大连续登录天数。 - 最终结果:显示连续登录天数最多的用户及其天数。
- 查询:根据