您的位置:首页 > 汽车 > 新车 > 全球最大的电商平台_网站优化公司价格如何计算_适合小学生的新闻事件_网络广告发布

全球最大的电商平台_网站优化公司价格如何计算_适合小学生的新闻事件_网络广告发布

2025/4/29 9:27:59 来源:https://blog.csdn.net/2401_82552436/article/details/147502288  浏览:    关键词:全球最大的电商平台_网站优化公司价格如何计算_适合小学生的新闻事件_网络广告发布
全球最大的电商平台_网站优化公司价格如何计算_适合小学生的新闻事件_网络广告发布

DStream转换

DStream 上的操作与 RDD 的类似,分为 Transformations(转换)和 Output Operations(输出)两种,此外转换操作中还有一些比较特殊的原语,如:updateStateByKey()、transform()以及各种 Window 相关的原语。

无状态转化操作

无状态转化操作就是把简单的 RDD 转化操作应用到每个批次上,也就是转化 DStream 中的每一个 RDD。部分无状态转化操作列在了下表中。

注意,针对键值对的 DStream 转化操作(比如reduceByKey())要添加

import StreamingContext._才能在 Scala 中使用。

需要记住的是,尽管这些函数看起来像作用在整个流上一样,但事实上每个 DStream 在内部是由许多 RDD(批次)组成,且无状态转化操作是分别应用到每个 RDD 上的。

例如:reduceByKey()会归约每个时间区间中的数据,但不会归约不同区间之间的数据。

需要记住的是,尽管这些函数看起来像作用在整个流上一样,但事实上每个 DStream 在内部是由许多 RDD(批次)组成,且无状态转化操作是分别应用到每个 RDD 上的。

例如:reduceByKey()会归约每个时间区间中的数据,但不会归约不同区间之间的数据。

需要记住的是,尽管这些函数看起来像作用在整个流上一样,但事实上每个 DStream 在内部是由许多 RDD(批次)组成,且无状态转化操作是分别应用到每个 RDD 上的。

例如:reduceByKey()会归约每个时间区间中的数据,但不会归约不同区间之间的数据。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com