from torch.utils.data import Dataset, DataLoader import numpy as npdef readfile(path, embeding):with open(path, "r", encoding = "utf-8") as file:all_data = file.read().split("\n")word_embeding = {"UNK": np.random.normal(size = (embeding, ))}for data in all_data:for word in data:if word not in word_embeding.keys():word_embeding[word] = np.random.normal(size = (embeding, ))return all_data, word_embedingclass MyDataset(Dataset):def __init__(self,data):self.data = datadef __len__(self):return len(self.data)def __getitem__(self, item):return self.data[item]if __name__ == "__main__":path = "D:前50行.txt"embeding = 50all_data, word_embeding = readfile(path, embeding)dataset = MyDataset(all_data)dataloader = DataLoader( dataset)for data in dataloader:for words in data:for word in words:print(word_embeding[word])