您的位置:首页 > 汽车 > 新车 > 山西做网站建设的平台_kuake自助建站系统源码_镇江网络_互联网营销师培训班

山西做网站建设的平台_kuake自助建站系统源码_镇江网络_互联网营销师培训班

2024/12/28 10:21:14 来源:https://blog.csdn.net/2201_75644377/article/details/142497740  浏览:    关键词:山西做网站建设的平台_kuake自助建站系统源码_镇江网络_互联网营销师培训班
山西做网站建设的平台_kuake自助建站系统源码_镇江网络_互联网营销师培训班

目录

  • 1. unordered系列关联式容器
    • 1.1 unordered_map
    • 1.2 unordered_set
  • 2. 哈希概念
  • 3. 哈希冲突
  • 4. 闭散列
  • 5. 开散列

博客主页: 酷酷学

感谢关注!!!


正文开始

1. unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2 N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和unordered_set进行介绍,unordered_multimap和unordered_multiset可查看文档介绍。

1.1 unordered_map

在这里插入图片描述

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与
    其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此
    键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内
    找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭
    代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问
    value。
  6. 它的迭代器至少是前向迭代器。

在这里插入图片描述

  1. unordered_map的构造

在这里插入图片描述
在这里插入图片描述

  1. unordered_map的容量

在这里插入图片描述

  1. unordered_map的迭代器

在这里插入图片描述

  1. unordered_map的元素访问

在这里插入图片描述

  1. unordered_map的查询

在这里插入图片描述

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

  1. unordered_map的修改操作

在这里插入图片描述

  1. unordered_map的桶操作

在这里插入图片描述

1.2 unordered_set

可点击查此处看帮助文档

2. 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % size; size为存储元素底层空间总的大小。

在这里插入图片描述

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

3. 哈希冲突

对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) == Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
发生哈希冲突该如何处理呢?

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值
  • 域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数

  1. 直接定址法–(常用)
    取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况
    面试题:字符串中第一个只出现一次字符
  2. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
    按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
  3. 平方取中法–(了解)
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;
    再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
    平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
  4. 折叠法–(了解)
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这
    几部分叠加求和,并按散列表表长,取后几位作为散列地址。
    折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
  5. 随机数法–(了解)
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中
    random为随机数函数。
    通常应用于关键字长度不等时采用此法
  6. 数学分析法–(了解)
    设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定
    相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只
    有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散
    列地址。例如:

在这里插入图片描述

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

解决哈希冲突两种常见的方法是:闭散列和开散列

4. 闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去. 那如何寻找下一个空位置呢?

  1. 线性探测
    比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入

  • 通过哈希函数获取待插入元素在哈希表中的位置
  • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

在这里插入图片描述

删除

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE}; 

思考:哈希表什么情况下进行扩容?如何扩容?

在这里插入图片描述

线性探测优点:实现非常简单,
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同
关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降
低。如何缓解呢?

二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 )% m, 或者: H i H_i Hi = ( H 0 H_0 H0 - i 2 i^2 i2 )% m。其中:i = 1,2,3…, H 0 H_0 H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

如果要插入44,产生冲突,使用解决后的情况为:

在这里插入图片描述

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

代码实现:

#pragma once
#include<iostream>
#include<vector>
using namespace std;template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};//特化
template<>
struct HashFunc<string>
{size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 31;hash += e;}return hash;}
};namespace open_address
{enum State{EXIST,EMPTY,DELETE};template<class K,class V>struct HashData{pair<K, V> _kv;State _state = EMPTY;};template<class K,class V,class Hash = HashFunc<K>>class HashTable{public:HashTable(){_tables.resize(10);}bool Insert(const pair<K,V>& kv){//3.不允许冗余if (Find(kv.first)) return false;//2.扩容if (_n * 10 / _tables.size() >= 7){//vector<HashData<K, V>> newTables(_tables.size() * 2);//遍历旧表...//_tables.swap(newTables);HashTable<K, V, Hash> newHT;newHT._tables.resize(_tables.size() * 2);for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._state == EXIST){newHT.Insert(_tables[i]._kv);}}_tables.swap(newHT._tables);}//1.插入Hash hs;size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){++hashi;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;++_n;return true;}HashData<K, V>* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._state == EXIST&& _tables[hashi]._kv.first == key){return &_tables[hashi];}++hashi;hashi %= _tables.size();}return nullptr;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret == nullptr){return false;}else{ret->_state = DELETE;return true;}}private:vector<HashData<K, V>> _tables;size_t _n = 0;//表中存储的数据个数};void test(){HashTable<int, int> h;HashTable<string, string> sh;/*sh.Insert({"asd","qwewr"});cout << sh.Find("asd") << endl;*/h.Insert({ 2,2 });//h.Erase(2);cout << h.Insert({ 2,3 }) << endl;//cout << h.Find(1) << endl;}
}

5. 开散列

  1. 开散列概念
    开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地
    址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链
    接起来,各链表的头结点存储在哈希表中。

在这里插入图片描述
在这里插入图片描述
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

代码实现:

namespace hash_bucket
{template<class K,class V>struct HashNode{pair<K, V> _kv;HashNode<K, V>* _next;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}};template<class K, class V,class Hash = HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:HashTable(){_table.resize(10, nullptr);}~HashTable(){//依次把每个桶释放for (size_t i = 0; i < _table.size(); i++){Node* cur = _table[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_table[i] = nullptr;}}bool Insert(const pair<K, V>& kv){//1.插入Hash hs;size_t hashi = hs(kv.first) % _table.size();//2.扩容if (_n == _table.size()){vector<Node*> newtables(_table.size() * 2, nullptr);for (size_t i = 0; i < _table.size(); i++){Node* cur = _table[i];while (cur){Node* next = cur->_next;//旧节点重新映射到新节点中size_t hashi = hs(cur->_kv.first) % newtables.size();//头插到新表cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;}//将原表置空_table[i] = nullptr;}_table.swap(newtables);}//头插Node* newnode = new Node(kv);newnode->_next = _table[hashi];_table[hashi] = newnode;++_n;return true;}Node* Find(const K& key){Hash hs;size_t hashi = hs(key) % _table.size();Node* cur = _table[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}bool Erase(const K& key){Hash hs;size_t hashi = hs(key) % _table.size();Node* prev = nullptr;Node* cur = _table[hashi];while (cur){if (cur->_kv.first == key) {//如果是头删if (prev == nullptr){_table[hashi] = cur->_next;}else{prev->_next = cur->_next;}delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _table;size_t _n = 0;};void testbucket(){HashTable<int, int> s;s.Insert({ 1,2 });}
}

开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:

由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。


版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com