您的位置:首页 > 文旅 > 旅游 > 网络培训学院_网页设计工程师工资_2022年新闻热点事件_搜索引擎入口网址

网络培训学院_网页设计工程师工资_2022年新闻热点事件_搜索引擎入口网址

2025/1/21 10:21:13 来源:https://blog.csdn.net/cxr828/article/details/144937490  浏览:    关键词:网络培训学院_网页设计工程师工资_2022年新闻热点事件_搜索引擎入口网址
网络培训学院_网页设计工程师工资_2022年新闻热点事件_搜索引擎入口网址

1.1 强化学习与深度学习的基本概念

1.1.1 强化学习的核心思想

什么是强化学习?

  • 强化学习(Reinforcement Learning, RL):指在与环境(Environment)的反复交互中,智能体(Agent)通过“试错”获取经验,并依据获得的奖励(Reward)学习出最优策略(Policy),以期在未来的决策中取得最大化的累积回报(Return)。

  • 核心要素

    1. 智能体(Agent):在环境中执行动作的主体;
    2. 环境(Environment):Agent 与之交互的外部世界;
    3. 状态(State):环境在某一时刻的刻画,Agent 能观测到或部分观测到;
    4. 动作(Action):Agent 针对所处状态执行的操作;
    5. 奖励(Reward):环境对 Agent 所执行动作的反馈信号,用来衡量动作的好坏;
    6. 策略(Policy):Agent 在任意给定状态下选择动作的规则或函数 $ π ( a ∣ s ) \pi(a|s) π(as));
    7. 目标:在整个交互过程中累积尽可能多的奖励(或最大化期望折扣累积奖励)。

强化学习与监督/无监督学习的区别

  • 监督学习(Supervised Learning)

    • 有“正确标签”作为监督信息;
    • 训练目标是最小化预测与标签之间的损失(如分类错误率、回归均方差)。
  • 无监督学习(Unsupervised Learning)

    • 无任何标签信息,尝试从数据中发现分布结构或聚类模式;
    • 常见应用:聚类、降维、异常检测等。
  • 强化学习(Reinforcement Learning)

    • 没有直接的“正确动作”标签,只有环境给出的奖励信号;
    • 学习是通过“试错”来迭代地调整策略,以期获得最大累计回报;
    • 当前动作会影响未来的状态和奖励,存在时间与序列上的依赖。

强化学习的基本流程

  1. Agent 根据某种策略 π \pi π 选择动作 a t a_t at
  2. 环境执行该动作并返回下一状态 s t + 1 s_{t+1} st+1 与即时奖励 r t r_t rt
  3. Agent 更新自己的策略或价值函数;
  4. 重复交互直到任务结束(或达到最大时间步数)。

这个反复交互与决策-反馈的过程是强化学习最突出的特点。不断从环境中“试错”并更新策略,以适应不确定或动态的外界。


1.1.2 深度学习基础回顾

为了将强化学习扩展到高维、复杂的状态空间(如图像、文本),往往需要借助 深度神经网络 来进行函数逼近。此时就进入了 深度强化学习(Deep Reinforcement Learning, DRL) 的范畴。以下是深度学习的几个关键概念:

  1. 神经网络结构

    • 通常由多层线性或卷积、循环等结构堆叠,加上激活函数(ReLU、Sigmoid、Tanh 等)构成;
    • 可以视为一个可微分的函数 f θ ( x ) f_\theta(x) fθ(x),其中 θ \theta θ 表示模型参数(权重和偏置)。
  2. 梯度下降与损失函数

    • 损失函数(Loss Function):衡量预测与目标之间差异的函数,常见如均方误差、交叉熵;
    • 梯度下降(Gradient Descent):利用目标函数相对于参数的梯度来迭代更新参数;
    • 优化器(Optimizer):SGD、Adam、RMSProp 等都是常用的梯度下降算法变体,用于加速收敛、提升稳定性。
  3. 深度学习在强化学习中的角色

    • 函数逼近器:将状态作为输入,输出价值(Q 值)或动作的概率分布;
    • 特征提取:通过卷积网络或其他结构,从原始高维数据(如图像)中提取有用的特征。

结合深度学习后,强化学习能够应对高维连续状态、复杂的感知和控制任务,如 Atari 游戏、机器人操控、自动驾驶等场景。


1.2 马尔可夫决策过程(MDP)

1.2.1 MDP 基本定义

强化学习通常用 马尔可夫决策过程(Markov Decision Process, MDP) 来建模。MDP 是一个五元组 ⟨ S , A , P , R , γ ⟩ \langle \mathcal{S}, \mathcal{A}, P, R, \gamma \rangle S,A,P,R,γ

  1. 状态空间 S \mathcal{S} S

    • 系统可能处于的所有状态的集合(离散或连续)。
  2. 动作空间 A \mathcal{A} A

    • Agent 可执行的所有动作集合(离散或连续)。
  3. 转移概率 P ( s t + 1 ∣ s t , a t ) P(s_{t+1} | s_t, a_t) P(st+1st,at)

    • 从状态 s t s_t st 执行动作 a t a_t at 后进入下一状态 s t + 1 s_{t+1} st+1 的概率分布。
    • “马尔可夫性质”表示:下一状态只与当前状态和当前动作有关,与过去的历史无关。
  4. 奖励函数 R ( s t , a t , s t + 1 ) R(s_t, a_t, s_{t+1}) R(st,at,st+1)

    • 执行动作后得到的奖励,可简化成 R ( s , a ) R(s,a) R(s,a) R ( s ) R(s) R(s) 等形式。
  5. 折扣因子 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ[0,1]

    • 用于平衡短期奖励和长期奖励的权重;
    • 越接近 1,越重视长期效益;越接近 0,越重视眼前奖励。

累计奖励

  • 目标:最大化期望折扣累计回报
    E [ ∑ t = 0 ∞ γ t r t ] \LARGE \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t \right] E t=0γtrt
    , 其中 r t r_t rt 是智能体在时间步 t t t 获得的即时奖励。

1.2.2 价值函数与 Q 函数

策略 π \pi π

  • 策略 π \pi π 定义在每个状态 s s s 下,选择动作 a a a 的分布: π ( a ∣ s ) \pi(a|s) π(as)
  • 确定性策略 π ( s ) = a \pi(s) = a π(s)=a,即在状态 s s s 下必然选择动作 a a a
  • 随机策略 π ( a ∣ s ) \pi(a|s) π(as) 是一个概率分布,在状态 s s s 下选择动作 a a a 的概率。

状态价值函数 V π ( s ) V^\pi(s) Vπ(s)

  • 在策略 π \pi π 下,从状态 s s s 出发所能获得的期望折扣累计奖励
    V π ( s ) = E π [ ∑ k = 0 ∞ γ k r t + k | s t = s ] \LARGE V^\pi(s) = \mathbb{E}_\pi \left[ \sum_{k=0}^\infty \gamma^k r_{t+k} \,\middle|\, s_t = s \right] Vπ(s)=Eπ k=0γkrt+k st=s
  • 这表示如果我们始终遵循策略 π \pi π,在状态 s s s 时的预期收益。

动作价值函数 Q π ( s , a ) Q^\pi(s,a) Qπ(s,a)

  • 在策略 π \pi π 下,从状态 s s s 执行动作 a a a 后,所能获得的期望折扣累计奖励:
    Q π ( s , a ) = E π [ ∑ k = 0 ∞ γ k r t + k | s t = s , a t = a ] \LARGE Q^\pi(s,a) = \mathbb{E}_\pi \left[ \sum_{k=0}^\infty \gamma^k r_{t+k} \,\middle|\, s_t = s, a_t=a \right] Qπ(s,a)=Eπ k=0γkrt+k st=s,at=a
  • 也称作 Q 函数动作价值函数

价值函数与策略之间的关系

  1. 状态价值函数与 Q 函数
    V π ( s ) = ∑ a ∈ A π ( a ∣ s ) Q π ( s , a ) \LARGE V^\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \, Q^\pi(s,a) Vπ(s)=aAπ(as)Qπ(s,a)

    • 状态价值是动作价值的加权期望,权重为策略在该状态下选择各动作的概率。
  2. Bellman 期望方程:在策略 π \pi π 下,
    Q π ( s , a ) = R ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V π ( s ′ ) \LARGE Q^\pi(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^\pi(s') Qπ(s,a)=R(s,a)+γsP(ss,a)Vπ(s)
    也可写成
    V π ( s ) = ∑ a π ( a ∣ s ) [ R ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V π ( s ′ ) ] \LARGE V^\pi(s) = \sum_{a} \pi(a|s) \big[R(s,a) + \gamma \sum_{s'}P(s'|s,a)V^\pi(s')\big] Vπ(s)=aπ(as)[R(s,a)+γsP(ss,a)Vπ(s)]

最优价值函数

  • 最优状态价值函数
    V ∗ ( s ) = max ⁡ π V π ( s ) \LARGE V^*(s) = \max_\pi V^\pi(s) V(s)=πmaxVπ(s)
    即在状态 s s s 下能获得的最高期望回报。
  • 最优 Q 函数
    Q ∗ ( s , a ) = max ⁡ π Q π ( s , a ) \LARGE Q^*(s,a) = \max_\pi Q^\pi(s,a) Q(s,a)=πmaxQπ(s,a)
    即在状态 s s s 执行动作 a a a 后,所能获得的最高期望回报。
  • 对于任何 MDP,都存在一个或多个最优策略 π ∗ \pi^* π,其满足
    Q ∗ ( s , a ) = Q π ∗ ( s , a ) , V ∗ ( s ) = V π ∗ ( s ) \LARGE Q^*(s,a) = Q^{\pi^*}(s,a), \quad V^*(s) = V^{\pi^*}(s) Q(s,a)=Qπ(s,a),V(s)=Vπ(s)

1.3 经典强化学习方法

在传统强化学习领域(未结合深度学习之前),有一些基本且重要的方法,如动态规划、价值迭代、策略迭代,以及以 Q-Learning / SARSA 为代表的时序差分(TD)方法等。这些算法主要针对离散、规模相对较小的状态空间。

1.3.1 动态规划 (Dynamic Programming, DP)

动态规划方法通常要求我们可以完全访问环境的动态模型(即知道转移概率和奖励函数),来进行 规划(planning)。两种典型的 DP 算法为:

1.3.1.1 价值迭代(Value Iteration)

  • Bellman 最优方程:对最优价值函数 V ∗ ( s ) V^*(s) V(s)
    V ∗ ( s ) = max ⁡ a [ R ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V ∗ ( s ′ ) ] \LARGE V^*(s) = \max_a \Big[ R(s,a) + \gamma \sum_{s'} P(s'|s,a)\, V^*(s') \Big] V(s)=amax[R(s,a)+γsP(ss,a)V(s)]
  • 价值迭代算法:从一个初始 V V V 开始,在每次迭代对所有状态执行:
    V ( s ) ← max ⁡ a [ R ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V ( s ′ ) ] . \LARGE V(s) \leftarrow \max_a \Big[ R(s,a) + \gamma \sum_{s'} P(s'|s,a)\, V(s') \Big]. V(s)amax[R(s,a)+γsP(ss,a)V(s)].
  • V ( s ) V(s) V(s) 收敛后,即得到近似的最优价值函数 V ∗ V^* V。进而可推得最优策略:
    π ∗ ( s ) = arg ⁡ max ⁡ a [ R ( s , a ) + γ ∑ s ′ P ( s ′ ∣ s , a ) V ( s ′ ) ] \LARGE \pi^*(s) = \arg\max_a \Big[ R(s,a) + \gamma \sum_{s'} P(s'|s,a)\, V(s') \Big] π(s)=argamax[R(s,a)+γsP(ss,a)V(s)]

1.3.1.2 策略迭代(Policy Iteration)

  • 分为两个阶段的交替:
    1. 策略评估(Policy Evaluation):在当前策略 π \pi π 下,计算得到 V π V^\pi Vπ
    2. 策略提升(Policy Improvement):基于 V π V^\pi Vπ 来更新得到新策略 π ′ \pi' π,使得期望收益更高。
  • 反复迭代,直到策略不再改变,得到最优策略 π ∗ \pi^* π

动态规划主要缺点在于:它通常需要我们显式知道环境的转移概率 P P P,且状态空间不宜过大,否则枚举计算的开销很大。


1.3.2 Q-Learning 和 SARSA

当环境模型未知或者难以获得时,可以采用**时序差分(Temporal Difference, TD)**的学习方法,直接通过与环境交互的样本来更新价值函数。其中最经典的两个算法是 Q-LearningSARSA。它们都更新 动作价值函数 Q ( s , a ) Q(s,a) Q(s,a),但有一些差异。

1.3.2.1 Q-Learning

  • 目标:学得最优 Q 函数 Q ∗ ( s , a ) Q^*(s,a) Q(s,a),在任意状态下选择 max ⁡ a Q ( s , a ) \max_a Q(s,a) maxaQ(s,a) 即可得到最优动作。
  • 更新规则
    Q ( s t , a t ) ← Q ( s t , a t ) + α [ r t + γ max ⁡ a ′ Q ( s t + 1 , a ′ ) − Q ( s t , a t ) ] \LARGE Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha \Big[r_t + \gamma \max_{a'}Q(s_{t+1},a') - Q(s_t,a_t)\Big] Q(st,at)Q(st,at)+α[rt+γamaxQ(st+1,a)Q(st,at)]
    其中 α \alpha α 为学习率。
  • 离策略(Off-policy)
    • 在实际执行中,Agent 会采用 ϵ \epsilon ϵ-贪心等探索策略选动作,但更新时使用的是 max ⁡ a ′ Q \max_{a'}Q maxaQ 的估计来逼近最优策略。
    • 这种“行为策略”与“目标策略”分离的方式,称为 Off-policy。

1.3.2.2 SARSA

  • 目标:学得“当前策略”本身的 Q 值,而不是最优策略;
  • 更新规则
    Q ( s t , a t ) ← Q ( s t , a t ) + α [ r t + γ Q ( s t + 1 , a t + 1 ) − Q ( s t , a t ) ] \LARGE Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha \Big[r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t,a_t)\Big] Q(st,at)Q(st,at)+α[rt+γQ(st+1,at+1)Q(st,at)]
    与 Q-Learning 的区别在于,TD 目标中用的动作是实际执行的动作 a t + 1 a_{t+1} at+1,而非 max ⁡ a ′ Q ( s t + 1 , a ′ ) \max_{a'} Q(s_{t+1},a') maxaQ(st+1,a)
  • 同策略(On-policy)
    • SARSA 所学习的策略与行为策略一致,也就是说它估计的是“ ϵ \epsilon ϵ-贪心策略自己”的价值函数。

1.3.2.3 比较

  • Q-Learning 更常用于学习最优策略(若能充分探索),但在某些噪声较大或者需要更保守策略的场景,SARSA 也有其价值,例如在 CliffWalking 环境中,SARSA 往往会学得更保守的路线。

1.3.3 策略梯度(Policy Gradient)概念(概述)

在上述 Q-Learning / SARSA / 动态规划 等方法中,核心思想是先估计价值函数(如 Q ( s , a ) Q(s,a) Q(s,a) V ( s ) V(s) V(s)),然后再通过贪心方式派生或改进策略。
策略梯度 方法则是从直接对策略 π θ ( a ∣ s ) \pi_\theta(a|s) πθ(as) 本身进行参数化和梯度优化的角度出发:

  • 参数化策略 π θ ( a ∣ s ) \pi_\theta(a|s) πθ(as),其参数为 θ \theta θ(可用神经网络表示)。
  • 目标:最大化期望回报 J ( θ ) = E π θ [ ∑ γ t r t ] J(\theta) = \mathbb{E}_{\pi_\theta}\left[\sum \gamma^t r_t\right] J(θ)=Eπθ[γtrt]
  • 思想:基于梯度上升,通过 ∇ θ J ( θ ) \nabla_\theta J(\theta) θJ(θ) 的估计来更新 θ \theta θ

这种方法适用于连续动作空间高维动作空间等场景,并且在先进的算法(如 PPO、SAC)中广泛使用。我们在后续章节会深入展开 Policy GradientActor-Critic 算法的完整推导和实现。


总结

在这一阶段,我们系统地介绍了强化学习的 概念基础MDP 理论框架以及 经典强化学习方法(动态规划、Q-Learning、SARSA、策略梯度基础)。核心要点包括:

  1. 强化学习与监督/无监督学习的区别:无正确标签,通过试错最大化累积奖励;
  2. 深度学习在 RL 中的角色:使用神经网络对价值函数或策略函数进行逼近,提高模型对高维复杂数据的处理能力;
  3. MDP 基本要素:状态、动作、转移概率、奖励、折扣因子,重点理解马尔可夫性质;
  4. 价值函数与 Q 函数:状态价值和动作价值是衡量某个策略在不同状态/动作组合下的未来收益预估;
  5. 经典强化学习
    • 动态规划:价值迭代、策略迭代(要求已知环境模型);
    • Q-Learning & SARSA:时序差分方法,通过与环境的交互样本在线学习;
    • 策略梯度概念:直接对策略进行参数化、对期望回报进行梯度优化。

以上内容构成强化学习的“底层框架”,为后续的**深度强化学习(DQN、DDPG、PPO、SAC 等)**打下扎实基础。在后面的学习中,我们会进一步讨论如何利用神经网络来逼近 Q Q Q 函数或策略,并解决各种复杂场景下的控制与决策问题。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com