我猜中了开头,但我猜不中这结局。— 大话西游 紫霞
🏰代码及环境配置:请参考 环境配置和代码运行!
本节提供了 梯度下降法,牛顿法的代码测试:
python3 tests/optimization/optimize_method_test.py
5.2.c.1 Rosenbrock Function
Rosenbrock Function是一个在数学最优化领域中广泛使用的非凸函数,由Howard Harry Rosenbrock在1960年提出。该函数也被称为Rosenbrock山谷、Rosenbrock香蕉函数或简称为香蕉函数。上图的蓝色山谷型部分就是Rosenbrock Function, 它的定义如下:
f ( x , y ) = ( a − x ) 2 + b ( y − x 2 ) 2 f(x, y)=(a-x)^2+b\left(y-x^2\right)^2 f(x,y)=(a−x)2+b(y−x2)2
Rosenbrock Function有以下特性:
- 非凸性:Rosenbrock函数是一个非凸函数,其全局最小值位于一个平滑的碗状形状的底部,但函数表面存在多个局部最小值,这使得优化算法容易陷入局部最优解。
- 强烈的倾斜性:当参数 b 较大时,函数在 y 方向上的变化比 x 方向更为剧烈,这增加了优化算法找到全局最小值的难度。
- 长谷底:Rosenbrock函数的图像中存在一个较长的谷底(香蕉型山谷),当优化算法进入这个谷底时,需要更多的步骤才能抵达全局最小点。
- 梯度稀疏性:在全局最小点附近,函数的梯度非常小,常常趋近于零,这使得基于梯度的优化算法可能需要很多次迭代才能收敛到最小值。
Rosenbrock的全局最小值在 ( 1 , 1 ) (1,1) (1,1)点, 并且在谷底存在多个局部最小值.
接下来, 我们会分别用梯度下降法和牛顿法, 求Rosenbrock Function的极小值.
min Γ 100 ( y − x 2 ) 2 + ( 1 − x ) 2 , Γ = [ x y ] ∈ R 2 \min _{\boldsymbol{\Gamma}} 100\left(y-x^2\right)^2+(1-x)^2, \boldsymbol{\Gamma}=\left[\begin{array}{l}x \\y\end{array}\right] \in \mathbb{R}^2 Γmin100(y−x2)2+(1−x)2,Γ=[xy]∈R2
目标函数的梯度和Hessian矩阵如下:
∇ f ( Γ ) = [ ∂ f ∂ x ( Γ ) ∂ f ∂ y ( Γ ) ] = [ − 400 x ( y − x 2 ) − 2 ( 1 − x ) 200 ( y − x 2 ) ] \boldsymbol{\nabla} f(\boldsymbol{\Gamma})=\left[\begin{array}{l}\frac{\partial f}{\partial x}(\boldsymbol{\Gamma}) \\\frac{\partial f}{\partial y}(\boldsymbol{\Gamma})\end{array}\right]=\left[\begin{array}{c}-400x\left(y-x^2\right)-2(1-x) \\200\left(y-x^2\right)\end{array}\right] ∇f(Γ)=[∂x∂f(Γ)∂y∂f(Γ)]=[−400x(y−x2)−2(1−x)200(y−x2)]
H ( Γ ) = [ ∂ 2 f ∂ x 2 ( Γ ) ∂ 2 f ∂ x ∂ y ( Γ ) ∂ 2 f ∂ y ∂ x ( Γ ) ∂ 2 f ∂ y 2 ( Γ ) ] = [ − 400 y + 1200 x 2 + 2 − 400 x − 400 x 200 ] \mathbf{H}(\boldsymbol{\Gamma})=\left[\begin{array}{ll}\frac{\partial^2 f}{\partial x^2}(\boldsymbol{\Gamma}) & \frac{\partial^2 f}{\partial x \partial y}(\boldsymbol{\Gamma}) \\\frac{\partial^2 f}{\partial y \partial x}(\boldsymbol{\Gamma}) & \frac{\partial^2 f}{\partial y^2}(\boldsymbol{\Gamma})\end{array}\right]=\left[\begin{array}{cc}-400 y+1200 x^2+2 & -400 x \\-400 x & 200\end{array}\right] H(Γ)=[∂x2∂2f(Γ)∂y∂x∂2f(Γ)∂x∂y∂2f(Γ)∂y2∂2f(Γ)]=[−400y+1200x2+2−400x−400x200]
我们定义了optimize(method)
, 它接受一个优化方法作为输入(梯度下降法或者牛顿法), 初始解 ( x , y ) = ( − 1.2 , 1 ) (x, y)=(-1.2,1) (x,y)=(−1.2,1), 求解rosenbrock_function
的最小值.
def rosenbrock_function(x, y):return 100 * (y - x**2) ** 2 + (1 - x) ** 2def optimize(method):x, y = sm.symbols("x y")symbols = [x, y]solution, x_star = method(rosenbrock_function(x, y), symbols, {x: -1.2, y: 1})
5.2.c.2 梯度下降法
我们调用了sympy来自动计算梯度:
def get_gradient(function: sm.core.expr.Expr,symbols: list[sm.core.symbol.Symbol],x0: dict[sm.core.symbol.Symbol, float], # Add x0 as argument
) -> np.ndarray:d1 = {}gradient = np.array([])for i in symbols:d1[i] = sm.diff(function, i, 1).evalf(subs=x0) # add evalf methodgradient = np.append(gradient, d1[i])return gradient.astype(np.float64) # Change data type to floatdef gradient_descent(function: sm.core.expr.Expr,symbols: list[sm.core.symbol.Symbol],x0: dict[sm.core.symbol.Symbol, float],learning_rate: float = 0.001,iterations: int = 10000,
) -> dict[sm.core.symbol.Symbol, float] or None:x_star = {}x_star[0] = np.array(list(x0.values()))print(f"Starting Values: {x_star[0]}")for i in range(iterations):gradient = get_gradient(function, symbols, dict(zip(x0.keys(), x_star[i])))x_star[i + 1] = x_star[i].T - learning_rate * gradient.Tif np.linalg.norm(x_star[i + 1] - x_star[i]) < 10e-5:solution = dict(zip(x0.keys(), x_star[i + 1]))print(f"\nConvergence Achieved ({i+1} iterations): Solution = {solution}")breakelse:solution = Noneprint(f"Step {i+1}: {x_star[i+1]}")return solution, x_star
在固定步长(学习率)learning_rate
的前提下, 面对非凸的Rosenbrock函数, 梯度下降法极易陷入局部最优解. 并且, 在接近谷底之后, 梯度非常小, 需要非常多的迭代次数才能达到.
……
Step 4210: [0.89674526 0.80371261]
Step 4211: [0.89679414 0.8038005 ]
Step 4212: [0.89684299 0.80388834]
Step 4213: [0.89689182 0.80397614]
Step 4214: [0.89694062 0.8040639 ]
Step 4215: [0.89698939 0.80415161]
Step 4216: [0.89703813 0.80423928]
Step 4217: [0.89708685 0.80432691]
Step 4218: [0.89713554 0.80441449]
Step 4219: [0.8971842 0.80450203]
Step 4220: [0.89723284 0.80458952]
Step 4221: [0.89728145 0.80467697]
经过4千多次迭代, 梯度下降法在局部最小值点停止了迭代
5.2.c.3 牛顿法
同样使用sympy计算Hessian矩阵, 并实现牛顿法:
def get_hessian(function: sm.core.expr.Expr,symbols: list[sm.core.symbol.Symbol],x0: dict[sm.core.symbol.Symbol, float],
) -> np.ndarray:d2 = {}hessian = np.array([])for i in symbols:for j in symbols:d2[f"{i}{j}"] = sm.diff(function, i, j).evalf(subs=x0)hessian = np.append(hessian, d2[f"{i}{j}"])hessian = np.array(np.array_split(hessian, len(symbols)))return hessian.astype(np.float64)def newton_method(function: sm.core.expr.Expr,symbols: list[sm.core.symbol.Symbol],x0: dict[sm.core.symbol.Symbol, float],iterations: int = 100,
) -> dict[sm.core.symbol.Symbol, float] or None:x_star = {}x_star[0] = np.array(list(x0.values()))print(f"Starting Values: {x_star[0]}")for i in range(iterations):gradient = get_gradient(function, symbols, dict(zip(x0.keys(), x_star[i])))hessian = get_hessian(function, symbols, dict(zip(x0.keys(), x_star[i])))x_star[i + 1] = x_star[i].T - np.linalg.inv(hessian) @ gradient.Tif np.linalg.norm(x_star[i + 1] - x_star[i]) < 10e-5:solution = dict(zip(x0.keys(), x_star[i + 1]))print(f"\nConvergence Achieved ({i+1} iterations): Solution = {solution}")breakelse:solution = Noneprint(f"Step {i+1}: {x_star[i+1]}")
执行测试, 牛顿仅需5次就抵达了全局最小值, 可视化可见文首的动图.
Starting Values: [-2 2]
Step 1: [-1.9925187 3.97007481]
Step 2: [ 0.96687269 -7.82315462]
Step 3: [0.96689159 0.93487935]
Step 4: [1. 0.99890383]
Step 5: [1. 1.]
参考链接
- https://towardsdatascience.com/optimization-newtons-method-profit-maximization-part-1-basic-optimization-theory-ff7c5f966565
推荐阅读
- 端到端理论与实战
- 动手学轨迹预测
- 动手学运动规划
- 动手学行为决策
- 强化学习入门笔记