您的位置:首页 > 文旅 > 旅游 > 百度怎么在视频下方投放广告_西安seo服务_seo网络营销推广公司深圳_星巴克网络营销案例分析

百度怎么在视频下方投放广告_西安seo服务_seo网络营销推广公司深圳_星巴克网络营销案例分析

2024/12/22 21:18:42 来源:https://blog.csdn.net/cfan927/article/details/116492827  浏览:    关键词:百度怎么在视频下方投放广告_西安seo服务_seo网络营销推广公司深圳_星巴克网络营销案例分析
百度怎么在视频下方投放广告_西安seo服务_seo网络营销推广公司深圳_星巴克网络营销案例分析

文章目录

  • 0. 前言
  • 1. PnP求解
    • 1.1 直接线性变换DLT
    • 1.2 P3P
    • 1.3 光束平差法BA
  • 2. 实现

0. 前言

透视n点(Perspective-n-Point,PnP)问题是计算机视觉领域的经典问题,用于求解3D-2D的点运动。换句话说,当知道 N N N个世界坐标系中3D空间点的坐标以及它们在图像上的投影点像素坐标时,可以使用PnP算法来估计相机在世界坐标系的姿态。P3P是最简化的PnP形式,即最少只需3个点即可估计当前的相机姿态(解不唯一)。

总体来说,PnP的求解方法有P3P、直接线性变换(Direct Linear Transformation,DLT)、EPnP(Efficient PnP)和UPnP等。此外,还有非线性优化解法,通过构建最小二乘问题并迭代求解,即万金油式的光束平差法(Bundle Adjustment,BA)

1. PnP求解

1.1 直接线性变换DLT

假设有世界坐标系中的3D点 P = [ X , Y , Z , 1 ] T P=[X, Y, Z, 1]^T P=[X,Y,Z,1]T,在图像 I 1 I_1 I1中对应的投影像素点为 x 1 = [ u 1 , v 1 , 1 ] T x_1=[u_1, v_1, 1]^T x1=[u1,v1,1]T,根据相机小孔成像模型有:

s [ u 1 v 1 1 ] = [ R ∣ t ] P = [ t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ] [ X Y Z 1 ] s \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}= \begin{bmatrix} R | t \end{bmatrix} P= \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \\ t_5 & t_6 & t_7 & t_8 \\ t_9 & t_{10} & t_{11} & t_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} s u1v11 =[Rt]P= t1t5t9t2t6t10t3t7t11t4t8t12 XYZ1

其中 s = Z s=Z s=Z,利用最后一行将其消去有:

{ s u 1 = t 1 X + t 2 Y + t 3 Z + t 4 s v 1 = t 5 X + t 6 Y + t 7 Z + t 8 s = t 9 X + t 10 Y + t 11 Z + t 12 ⇒ { u 1 = t 1 X + t 2 Y + t 3 Z + t 4 t 9 X + t 10 Y + t 11 Z + t 12 v 1 = t 5 X + t 6 Y + t 7 Z + t 8 t 9 X + t 10 Y + t 11 Z + t 12 \begin{cases} s u_1 = t_1 X + t_2 Y + t_3 Z + t_4\\ s v_1 = t_5 X + t_6 Y + t_7 Z + t_8\\ s = t_9 X + t_{10} Y + t_{11} Z + t_{12} \end{cases} \Rightarrow \begin{cases} u_1 = \frac{t_1 X + t_2 Y + t_3 Z + t_4}{t_9 X + t_{10} Y + t_{11} Z + t_{12}} \\ v_1 = \frac{t_5 X + t_6 Y + t_7 Z + t_8}{t_9 X + t_{10} Y + t_{11} Z + t_{12}} \\ \end{cases} \\ su1=t1X+t2Y+t3Z+t4sv1=t5X+t6

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com