您的位置:首页 > 文旅 > 美景 > 网络运营培训课程_电商页面设计公司_谷歌优化技巧_seo免费培训视频

网络运营培训课程_电商页面设计公司_谷歌优化技巧_seo免费培训视频

2025/2/24 22:06:21 来源:https://blog.csdn.net/kjm13182345320/article/details/143808584  浏览:    关键词:网络运营培训课程_电商页面设计公司_谷歌优化技巧_seo免费培训视频
网络运营培训课程_电商页面设计公司_谷歌优化技巧_seo免费培训视频

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现POD-Transformer多变量回归预测,本征正交分解数据降维融合Transformer多变量回归预测,使用SVD进行POD分解(本征正交分解);
2.运行环境Matlab2023b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前多列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
本征正交分解,Proper orthogonal decomposition 缩写为POD,是一种用于提取离散数据特征信息的数学方法。POD 方法的目的是把多维随机过程进行低维近似描述并提取复杂随机过程的本质特征。其基本思想是将随机量分解为由其自身特征所确定的一组基函数来表示,基函数的确定原则为在每一次分解的过程中使得最低阶的模式上含能最多。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复POD-Transformer多变量回归预测(Matlab)

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
result = xlsread('data.xlsx');%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com