您的位置:首页 > 文旅 > 美景 > 粤嵌培训4个月收费_logo在线制作设计_今天最新的新闻_win7优化大师官方免费下载

粤嵌培训4个月收费_logo在线制作设计_今天最新的新闻_win7优化大师官方免费下载

2024/12/23 16:38:16 来源:https://blog.csdn.net/weixin_42290927/article/details/142213055  浏览:    关键词:粤嵌培训4个月收费_logo在线制作设计_今天最新的新闻_win7优化大师官方免费下载
粤嵌培训4个月收费_logo在线制作设计_今天最新的新闻_win7优化大师官方免费下载

部署资源

  • AUTODL 使用最小3080Ti 资源,cuda > 12.0
  • 使用云服务器,部署fastGPT oneAPI,M3E 模型

操作步骤

  1. 配置代理
    export HF_ENDPOINT=https://hf-mirror.com
  2. 下载qwen2模型 - 如何下载huggingface
    huggingface-cli download Qwen/Qwen2-7B-Instruct-GGUF qwen2-7b-instruct-q5_k_m.gguf --local-dir . --local-dir-use-symlinks False
  3. 创建模型文件
    FROM qwen2-7b-instruct-q5_k_m.gguf# set the temperature to 1 [higher is more creative, lower is more coherent]
    PARAMETER temperature 0.7
    PARAMETER top_p 0.8
    PARAMETER repeat_penalty 1.05
    TEMPLATE """{{ if and .First .System }}<|im_start|>system
    {{ .System }}<|im_end|>
    {{ end }}<|im_start|>user
    {{ .Prompt }}<|im_end|>
    <|im_start|>assistant
    {{ .Response }}"""
    # set the system message
    SYSTEM """
    You are a helpful assistant.
    """
    
  4. 导入模型
    ollama create qwen2:7b -f Modelfile
  5. 运行qwen2客户端
    ollama run qwen2-7b
  6. 运行m3e RAG模型
    version: '3'
    services:m3e_api:container_name: m3e_apienvironment:TZ: Asia/Shanghaiimage: registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/m3e-large-api:latestrestart: alwaysports:- "6200:6008"
    
  7. 运行fastAPI + oneAPI
    version: '3.3'
    services:# dbpg:image: pgvector/pgvector:0.7.0-pg15 # docker hub# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/pgvector:v0.7.0 # 阿里云container_name: pgrestart: alwaysports: # 生产环境建议不要暴露- 5432:5432networks:- fastgptenvironment:# 这里的配置只有首次运行生效。修改后,重启镜像是不会生效的。需要把持久化数据删除再重启,才有效果- POSTGRES_USER=username- POSTGRES_PASSWORD=password- POSTGRES_DB=postgresvolumes:- ./pg/data:/var/lib/postgresql/datamongo:image: mongo:5.0.18 # dockerhub# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mongo:5.0.18 # 阿里云# image: mongo:4.4.29 # cpu不支持AVX时候使用container_name: mongorestart: alwaysports:- 27017:27017networks:- fastgptcommand: mongod --keyFile /data/mongodb.key --replSet rs0environment:- MONGO_INITDB_ROOT_USERNAME=myusername- MONGO_INITDB_ROOT_PASSWORD=mypasswordvolumes:- ./mongo/data:/data/dbentrypoint:- bash- -c- |openssl rand -base64 128 > /data/mongodb.keychmod 400 /data/mongodb.keychown 999:999 /data/mongodb.keyecho 'const isInited = rs.status().ok === 1if(!isInited){rs.initiate({_id: "rs0",members: [{ _id: 0, host: "mongo:27017" }]})}' > /data/initReplicaSet.js# 启动MongoDB服务exec docker-entrypoint.sh "$$@" &# 等待MongoDB服务启动until mongo -u myusername -p mypassword --authenticationDatabase admin --eval "print('waited for connection')" > /dev/null 2>&1; doecho "Waiting for MongoDB to start..."sleep 2done# 执行初始化副本集的脚本mongo -u myusername -p mypassword --authenticationDatabase admin /data/initReplicaSet.js# 等待docker-entrypoint.sh脚本执行的MongoDB服务进程wait $$!# fastgptsandbox:container_name: sandboximage: ghcr.io/labring/fastgpt-sandbox:latest # git# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt-sandbox:latest # 阿里云networks:- fastgptrestart: alwaysfastgpt:container_name: fastgptimage: ghcr.io/labring/fastgpt:v4.8.9 # git# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/fastgpt:v4.8.9 # 阿里云ports:- 3200:3000networks:- fastgptdepends_on:- mongo- pg- sandboxrestart: alwaysenvironment:# root 密码,用户名为: root。如果需要修改 root 密码,直接修改这个环境变量,并重启即可。- DEFAULT_ROOT_PSW=1234# AI模型的API地址哦。务必加 /v1。这里默认填写了OneApi的访问地址。- OPENAI_BASE_URL=http://oneapi:3000/v1# AI模型的API Key。(这里默认填写了OneAPI的快速默认key,测试通后,务必及时修改)- CHAT_API_KEY=sk-fastgpt# 数据库最大连接数- DB_MAX_LINK=30# 登录凭证密钥- TOKEN_KEY=any# root的密钥,常用于升级时候的初始化请求- ROOT_KEY=root_key# 文件阅读加密- FILE_TOKEN_KEY=filetoken# MongoDB 连接参数. 用户名myusername,密码mypassword。- MONGODB_URI=mongodb://myusername:mypassword@mongo:27017/fastgpt?authSource=admin# pg 连接参数- PG_URL=postgresql://username:password@pg:5432/postgres# sandbox 地址- SANDBOX_URL=http://sandbox:3000# 日志等级: debug, info, warn, error- LOG_LEVEL=info- STORE_LOG_LEVEL=warnvolumes:- ./config.json:/app/data/config.json# oneapimysql:# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/mysql:8.0.36 # 阿里云image: mysql:8.0.36container_name: mysqlrestart: alwaysports:- 3306:3306networks:- fastgptcommand: --default-authentication-plugin=mysql_native_passwordenvironment:# 默认root密码,仅首次运行有效MYSQL_ROOT_PASSWORD: oneapimmysqlMYSQL_DATABASE: oneapivolumes:- ./mysql:/var/lib/mysqloneapi:container_name: oneapiimage: ghcr.io/songquanpeng/one-api:v0.6.7# image: registry.cn-hangzhou.aliyuncs.com/fastgpt/one-api:v0.6.6 # 阿里云ports:- 3001:3000depends_on:- mysqlnetworks:- fastgptrestart: alwaysenvironment:# mysql 连接参数- SQL_DSN=root:oneapimmysql@tcp(mysql:3306)/oneapi# 登录凭证加密密钥- SESSION_SECRET=oneapikey# 内存缓存- MEMORY_CACHE_ENABLED=true# 启动聚合更新,减少数据交互频率- BATCH_UPDATE_ENABLED=true# 聚合更新时长- BATCH_UPDATE_INTERVAL=10# 初始化的 root 密钥(建议部署完后更改,否则容易泄露)- INITIAL_ROOT_TOKEN=fastgptvolumes:- ./oneapi:/data
    networks:fastgpt:
    
  8. 编辑fastGPT 的模型配置
{"feConfigs": {"lafEnv": "https://laf.dev"},"systemEnv": {"vectorMaxProcess": 15,"qaMaxProcess": 15,"pgHNSWEfSearch": 100},"llmModels":[{"model": "qwen2:7b","name": "qwen2","avatar": "/imgs/model/openai.svg","maxContext": 125000,"maxResponse": 4000,"quoteMaxToken": 120000,"maxTemperature": 1.2,"charsPointsPrice": 0,"censor": false,"vision": true,"datasetProcess": false,"usedInClassify": true,"usedInExtractFields": true,"usedInToolCall": true,"usedInQueryExtension": true,"toolChoice": true,"functionCall": false,"customCQPrompt": "","customExtractPrompt": "","defaultSystemChatPrompt": "","defaultConfig": {}}],"vectorModels": [{"model": "mxbai-embed-large","name": "mxbai","avatar": "/imgs/model/openai.svg","charsPointsPrice": 0,"defaultToken": 512,"maxToken": 3000,"weight": 100},{"model": "m3e","name": "M3E","price": 0.1,"defaultToken": 500,"maxToken": 1800}],"reRankModels": [],"audioSpeechModels": [{"model": "tts-1","name": "OpenAI TTS1","charsPointsPrice": 0,"voices": [{ "label": "Alloy", "value": "alloy", "bufferId": "openai-Alloy" },{ "label": "Echo", "value": "echo", "bufferId": "openai-Echo" },{ "label": "Fable", "value": "fable", "bufferId": "openai-Fable" },{ "label": "Onyx", "value": "onyx", "bufferId": "openai-Onyx" },{ "label": "Nova", "value": "nova", "bufferId": "openai-Nova" },{ "label": "Shimmer", "value": "shimmer", "bufferId": "openai-Shimmer" }]}],"whisperModel": {"model": "whisper-1","name": "Whisper1","charsPointsPrice": 0}
}
  1. 打开oneapi http://ip:3001, 初始密码 root 1234, 配置qwen2 模型以及M3E模型
    在这里插入图片描述
    在这里插入图片描述在这里插入图片描述
  2. 点击测试
    在这里插入图片描述
    • 注:M3E 点击测试后提示404是正常的
      在这里插入图片描述
  3. 重启fastgpt 和 oneapi
    docker-compose restart fastgpt oneapi
  4. 在fastgpt 中创建一个应用进行测试
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  5. 大功告成!!!

从huggingface中直接下载,使用python直接部署为服务

  • https://github.com/datawhalechina/self-llm/blob/master/models/Qwen2/01-Qwen2-7B-Instruct%20FastApi%20%E9%83%A8%E7%BD%B2%E8%B0%83%E7%94%A8.md
  • fastAPI 部署模型对话服务

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com