您的位置:首页 > 健康 > 美食 > Hive函数学习之UDTF与UDAF的应用案例

Hive函数学习之UDTF与UDAF的应用案例

2025/1/3 0:02:37 来源:https://blog.csdn.net/m0_58050808/article/details/139621893  浏览:    关键词:Hive函数学习之UDTF与UDAF的应用案例

UDTF与UDAF的应用案例:

UDTF:一进多出

UDTF是一对多的输入输出,实现UDTF需要完成下面步骤

M1001#xiaohu#S324231212,lkd#M1002#S2543412432,S21312312412#M1003#bfy

1001 xiaohu 324231212

1002 lkd 2543412432

1003 bfy 21312312412

继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF,
重写initlizer()、process()、close()。
执行流程如下:

UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。

初始化完成后,会调用process方法,真正的处理过程在process函数中,在process中,每一次forward()调用产生一行;如果产生多列可以将多个列的值放在一个数组中,然后将该数组传入到forward()函数。

最后close()方法调用,对需要清理的方法进行清理。

“key1:value1,key2:value2,key3:value3”

key1 value1

key2 value2

key3 value3

方法:自定UDTF

字段:id,col1,col2,col3,col4,col5,col6,col7,col8,col9,col10,col11,col12 共13列

数据:

a,1,2,3,4,5,6,7,8,9,10,11,12

b,11,12,13,14,15,16,17,18,19,20,21,22

c,21,22,23,24,25,26,27,28,29,30,31,32

转成3列:id,hours,value

例如:

a,1,2,3,4,5,6,7,8,9,10,11,12

a,0时,1

a,2时,2

a,4时,3

a,6时,4

create table udtfData(id string,col1 string,col2 string,col3 string,col4 string,col5 string,col6 string,col7 string,col8 string,col9 string,col10 string,col11 string,col12 string
)row format delimited fields terminated by ',';

代码:

import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;import java.util.ArrayList;public class MyUDTFDemo2 extends GenericUDTF {@Overridepublic StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {//创建两个集合,这两个集合是一一对应的关系//一个是列名的集合// 注意集合的泛型ArrayList<String> colNameList = new ArrayList<>();colNameList.add("id");colNameList.add("time");colNameList.add("value");//另一个是列数据类型的集合// 注意集合的泛型ArrayList<ObjectInspector> colTypeList = new ArrayList<>();colTypeList.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);colTypeList.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);colTypeList.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);//将列名集合和列数据类型集合对应返回return ObjectInspectorFactory.getStandardStructObjectInspector(colNameList, colTypeList);}@Overridepublic void process(Object[] args) throws HiveException {String[] infos = new String[3];//a,1,2,3,4,5,6,7,8,9,10,11,12//输出:// a  0时  1String id = args[0].toString();infos[0] = id;int t = 0;for (int i = 1; i < args.length; i++) {infos[1] = t + "时";infos[2] = args[i].toString();forward(infos);t += 2;}}@Overridepublic void close() throws HiveException {}
}

添加jar资源:

load data local inpath '/usr/local/soft/bigdata30/udtfData.txt' into table udtfData;add jar /usr/local/soft/bigdata30/data_jars/hive-1.0-jar-with-dependencies.jar;

注册udtf函数:

create temporary function shujia2 as 'com.shujia.custom.udtf.MyUDTFDemo2';

SQL:

select shujia2(*) from udtfData;

在这里插入图片描述

UDAF:多进一出

连续登陆问题

在电商、物流和银行可能经常会遇到这样的需求:统计用户连续交易的总额、连续登陆天数、连续登陆开始和结束时间、间隔天数等

数据:

注意:每个用户每天可能会有多条记录

id	datestr	  amount
1,2019-02-08,6214.23 
1,2019-02-08,6247.32 
1,2019-02-09,85.63 
1,2019-02-09,967.36 
1,2019-02-10,85.69 
1,2019-02-12,769.85 
1,2019-02-13,943.86 
1,2019-02-14,538.42
1,2019-02-15,369.76
1,2019-02-16,369.76
1,2019-02-18,795.15
1,2019-02-19,715.65
1,2019-02-21,537.71
2,2019-02-08,6214.23 
2,2019-02-08,6247.32 
2,2019-02-09,85.63 
2,2019-02-09,967.36 
2,2019-02-10,85.69 
2,2019-02-12,769.85 
2,2019-02-13,943.86 
2,2019-02-14,943.18
2,2019-02-15,369.76
2,2019-02-18,795.15
2,2019-02-19,715.65
2,2019-02-21,537.71
3,2019-02-08,6214.23 
3,2019-02-08,6247.32 
3,2019-02-09,85.63 
3,2019-02-09,967.36 
3,2019-02-10,85.69 
3,2019-02-12,769.85 
3,2019-02-13,943.86 
3,2019-02-14,276.81
3,2019-02-15,369.76
3,2019-02-16,369.76
3,2019-02-18,795.15
3,2019-02-19,715.65
3,2019-02-21,537.71
建表语句
create table deal_tb(id string,datestr string,amount string
)row format delimited fields terminated by ',';load data local inpath '/usr/local/soft/bigdata30/deal_tb.txt' into table deal_tb;
计算逻辑
  • 先按用户和日期分组求和,使每个用户每天只有一条数据
 select id,datestr,sum(amount) as amount from deal_tb group by id,datestr;
  • 根据用户ID分组按日期排序,将日期和分组序号相减得到连续登陆的开始日期,如果开始日期相同说明连续登陆

  • 统计用户连续交易的总额、连续登陆天数、连续登陆开始和结束时间、间隔天数

 -- 步骤1 开窗,增添一个按id分组的递增序号列,为后续将日期和分组序号相减得到连续登陆的开始日期做准备select t.*,row_number() over(partition by t.id order by t.datestr) as rnfrom(select id,datestr,sum(amount) as amount from deal_tb group by id,datestr) t;-- 步骤2 根据用户ID分组按日期排序,将日期和分组序号相减得到连续登陆的开始日期,如果开始日期相同说明连续登陆
select 
t2.*,
date_sub(t2.datestr,t2.rn) as grp
from( select t1.*,row_number() over(partition by t1.id order by t1.datestr) as rnfrom(select id,datestr,sum(amount) as amount from deal_tb group by id,datestr) t1
) t2;-- 可以使用开窗函数得出最终结果: 统计用户连续交易的总额、连续登陆天数、连续登陆开始和结束时间、间隔天数
-- 步骤3 直接对t3进行分组:统计用户连续交易的总额、连续登陆天数、连续登陆开始和结束时间
select 
t3.id as id,
min(t3.datestr) as start_date,
max(t3.datestr) as end_date,
sum(t3.amount) as amounts,
count(1) as days
from
(select 
t2.*,
date_sub(t2.datestr,t2.rn) as grp
from( select t1.*,row_number() over(partition by t1.id order by t1.datestr) as rnfrom(select id,datestr,sum(amount) as amount from deal_tb group by id,datestr) t1
) t2
)t3 group by t3.id,t3.grp;-- 步骤4 求出间隔天数及最终结果
-- LAG(col,n,default_val):**往前第n行数据,col是列名,n是往上的行数,当第n行为null的时候取default_val 
select 
t4.*,
-- 使用当前行的start_date - 上一行的end_date -1,得出所需要的间隔天数
nvl(datediff(start_date,lag(end_date,1) over(partition by id order by start_date))-1,0) as gap_days
from
(select t3.id as id,min(t3.datestr) as start_date,max(t3.datestr) as end_date,sum(t3.amount) as amounts,count(1) as daysfrom(select t2.*,date_sub(t2.datestr,t2.rn) as grpfrom( select t1.*,row_number() over(partition by t1.id order by t1.datestr) as rnfrom(select id,datestr,sum(amount) as amount from deal_tb group by id,datestr) t1) t2) t3 group by t3.id,t3.grp
) t4;
  • 结果
    在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com