红黑树封装map、set
- 1.源码及框架分析
- 2.模拟实现map和set
- 1.支持 insert 的实现
- 2.支持 iterator 的实现
- 3.map支持 operator [] 的实现
- 3.总代码
- 1.RBTree.h
- 2.Myset.h
- 3.Mymap.h
- 4.Test.cpp
1.源码及框架分析
SGI-STL30版本源代码,map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等几个头文件中。map和set的实现结构框架核心部分截取出来如下:
// set
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_set.h>
#include <stl_multiset.h>// map
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_map.h>
#include <stl_multimap.h>// stl_set.h
template <class Key, class Compare = less<Key>, class Alloc = alloc>
class set {
public:// typedefs:typedef Key key_type;typedef Key value_type;
private:typedef rb_tree<key_type, value_type,identity<value_type>, key_compare, Alloc> rep_type;rep_type t; // red-black tree representing set
};// stl_map.h
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:// typedefs:typedef Key key_type;typedef T mapped_type;typedef pair<const Key, T> value_type;
private:typedef rb_tree<key_type, value_type,select1st<value_type>, key_compare, Alloc> rep_type;rep_type t; // red-black tree representing map
};// stl_tree.h
struct __rb_tree_node_base
{typedef __rb_tree_color_type color_type;typedef __rb_tree_node_base* base_ptr;color_type color;base_ptr parent;base_ptr left;base_ptr right;
};// stl_tree.h
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc= alloc>
class rb_tree {
protected:typedef void* void_pointer;typedef __rb_tree_node_base* base_ptr;typedef __rb_tree_node<Value> rb_tree_node;typedef rb_tree_node* link_type;typedef Key key_type;typedef Value value_type;
public:// insert⽤的是第⼆个模板参数左形参 pair<iterator, bool> insert_unique(const value_type& x);// erase和find⽤第⼀个模板参数做形参 size_type erase(const key_type& x);iterator find(const key_type& x);
protected:size_type node_count; // keeps track of size of treelink_type header;
};template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{typedef __rb_tree_node<Value>* link_type;Value value_field;
};
- 通过下图对框架的分析,我们可以看到源码中rb_tree用了一个巧妙的泛型思想实现,rb_tree是实现key的搜索场景,还是key/value的搜索场景不是直接写死的,而是由第⼆个模板参数Value决定_rb_tree_node中存储的数据类型。
- set实例化rb_tree时第二个模板参数给的是key,map实例化rb_tree时第⼆个模板参数给的是 pair<const key,T>,这样一颗红黑树既可以实现key搜索场景的set,也可以实现key/value搜索场景的map。
- 要注意⼀下,源码里面模板参数是用T代表value,而内部写的value_type不是我们我们日常key/value场景中说的value,源码中的value_type反而是红黑树结点中存储的真实的数据的类型。
- rb_tree第⼆个模板参数Value已经控制了红黑树结点中存储的数据类型,为什么还要传第一个模板参数Key呢?尤其是set,两个模板参数是一样的。要注意的是对于map和set,find/erase时的函数参数都是Key,所以第一个模板参数是传给find/erase等函数做形参的类型的。对于set而言两个参数是一样的,但是对于map而言就完全不一样了,map insert的是pair对象,但是find和ease的是Key对象。
- 吐槽一下,这里源码命名风格比较乱,set模板参数用的Key命名,map用的是Key和T命名,而rb_tree用的又是Key和Value,可见大佬有时写代码也不规范。
2.模拟实现map和set
1.支持 insert 的实现
- 参考源码框架,map和set复用之前实现的红黑树。
- 这里相比源码调整一下,key参数就用K,value参数就用V,红黑树中的数据类型使用T。
- 其次因为RBTree实现了泛型不知道T参数,导致是K,还是pair<K,V>,那么insert内部进行插入逻辑比较时,就没办法进行比较,因为pair的默认支持的是key和value一起参与比较,我们需要时的任何时候只比较key,所以我们在map和set层分别实现一个MapKeyOfT和SetKeyOfT的仿函数传给RBTree的KeyOfT,然后RBTree中通过KeyOfT仿函数取出T类型对象中的key,再进行比较,具体细节参考如下代码实现。
//RBTree.h
enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{T _data;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;RBTreeNode(const T& data):_data(data), _left(nullptr), _right(nullptr), _parent(nullptr){}
};//KeyOfT:获取T中的Key,其中T是红黑树存储的数据
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;public:bool Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK; //空树插入的节点必须是黑色return true;}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(data);cur->_col = RED; //非空树插入的节点必须是红色if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}//链接父亲cur->_parent = parent;//变色、旋转逻辑...return true;}void RotateR(Node* parent){//...}void RotateL(Node* parent){//...}private:Node* _root = nullptr;
};//Myset.h
namespace xzy
{template<class K>class set{//仿函数用于插入时比较Key的大小struct SetKeyOfT{const K& operator()(const K& key){return key;}};public:bool insert(const K& key){return _t.Insert(key);}private:RBTree<K, K, SetKeyOfT> _t;};
}//Mymap.h
namespace xzy
{template<class K, class V>class map{//仿函数用于插入时比较Key的大小struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public:bool insert(const pair<K, V>& kv){return _t.Insert(kv);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}
2.支持 iterator 的实现
源代码核心部分如下:
struct __rb_tree_base_iterator
{typedef __rb_tree_node_base::base_ptr base_ptr;base_ptr node;void increment(){if (node->right != 0) {node = node->right;while (node->left != 0)node = node->left;}else {base_ptr y = node->parent;while (node == y->right) {node = y;y = y->parent;}if (node->right != y)node = y;}}void decrement(){if (node->color == __rb_tree_red &&node->parent->parent == node)node = node->right;else if (node->left != 0) {base_ptr y = node->left;while (y->right != 0)y = y->right;node = y;}else {base_ptr y = node->parent;while (node == y->left) {node = y;y = y->parent;}node = y;}}
};template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{typedef Value value_type;typedef Ref reference;typedef Ptr pointer;typedef __rb_tree_iterator<Value, Value&, Value*> iterator;__rb_tree_iterator() {}__rb_tree_iterator(link_type x) { node = x; }__rb_tree_iterator(const iterator& it) { node = it.node; }reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATORpointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */self& operator++() { increment(); return *this; }self& operator--() { decrement(); return *this; }inline bool operator==(const __rb_tree_base_iterator& x,const __rb_tree_base_iterator& y) {return x.node == y.node;}inline bool operator!=(const __rb_tree_base_iterator& x,const __rb_tree_base_iterator& y) {return x.node != y.node;}
};
iterator实现思路分析:
- iterator实现的大框架跟list的iterator思路是一致的,用一个类型封装结点的指针,再通过重载运算符实现,迭代器像指针一样访问的行为。
- 这里的难点是operator++和operator–的实现。map和set的迭代器走的是中序遍历,左子树->根->右子树,那么begin()会返回中序第一个结点的iterator也就是10所在结点的迭代器。
- 迭代器++的核心逻辑是不看全局,而是只看局部的,只考虑当前中序局部要访问的下一个结点。
- 迭代器++时,如果it指向的结点的右子树不为空,代表当前结点已经访问完了,要访问下⼀个结点是右子树的中序第一个,一棵树中序第一个是最左结点,所以直接找右子树的最左结点即可。如下图:it指向30,30右子树的最左结点是35,那么下一个访问的结点就是35。
- 迭代器++时,如果it指向的结点的右子树空,代表当前结点已经访问完了且当前结点所在的子树也
访问完了,要访问的下一个结点在当前结点的祖先里面,所以要沿着当前结点到根的祖先路径向上找。 - 如果当前结点是父亲的左,根据中序左子树->根->右子树,那么下一个访问的结点就是当前结点的父亲。如下图:it指向25,25右为空,25是30的左,所以下⼀个访问的结点就是30。
- 如果当前结点是父亲的右,根据中序左子树->根->右子树,当前当前结点所在的子树访问完了,当前结点所在父亲的子树也访问完了,那么下一个访问的需要继续往根的祖先中去找,直到找到孩子是父亲左的那个祖先就是中序要问题的下一个结点。如下图:it指向15,15右为空,15是10的右,15所在子树话访问完了,10所在子树也访问完了,继续往上找,10是18的左,那么下一个访问的结点就是18。
- end()如何表示呢?如下图:当it指向50时,++it时,50是40的右,40是30的右,30是18的右,18到根没有父亲,没有找到孩子是父亲左的那个祖先,这时父亲为空了,那我们就把it中的结点指针置为nullptr,我们用nullptr去充当end。需要注意的是stl源码中,红黑树增加了一个哨兵位头结点做为end(),这哨兵位头结点和根互为父亲,左指向最左结点,也就是begin(),右指向最右结点,也就是begin()。相比我们用nullptr作为end(),差别不大,哨兵位头结点能实现的,nullptr也能实现。只是–end()判断到结点时空,特殊处理一下,让迭代器结点指向最右结点。
- 迭代器–的实现跟++的思路完全类似,逻辑正好反过来即可,因为它访问顺序是右子树->根->左子树。
- set的iterator不支持修改key,我们把set的第⼆个模板参数改成const K即可, RBTree<K,
const K,
SetKeyOfT> _t; - map的iterator不支持修改key但是可以修改value,我们把map的第⼆个模板参数pair的第一个参数改成const K即可, RBTree<K,
pair<const K, V>
, MapKeyOfT> _t; - 支持完整的迭代器还有很多细节需要修改,具体参考下面题的代码。
//RBTree.h
enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{T _data;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;RBTreeNode(const T& data):_data(data), _left(nullptr), _right(nullptr), _parent(nullptr){}
};template<class T, class Ref, class Ptr>
class RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T, Ref, Ptr> Self;public:RBTreeIterator(Node* node, Node* root):_node(node),_root(root){}Self& operator++(){if (_node->_right){//右不为空,中序下一个访问的节点是右子树的最左(最小)结点Node* min = _node->_right;while (min->_left){min = min->_left;}_node = min;}else{//右为空,祖先里面孩子是父亲左的那个祖先Node* cur = _node;Node* parent = cur->_parent;while (parent && parent->_right == cur){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){if (_node == nullptr) // --end(){// --end(),特殊处理,走到中序最后一个结点,整棵树的最右结点Node* rightMost = _root;while (rightMost && rightMost->_right){rightMost = rightMost->_right;}_node = rightMost;}else if (_node->_left){// 左子树不为空,中序左子树最后一个Node* rightMost = _node->_left;while (rightMost->_right){rightMost = rightMost->_right;}_node = rightMost;}else{// 孩子是父亲右的那个祖先Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_left){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const Self& s) const{return _node != s._node;}bool operator==(const Self& s) const{return _node == s._node;}private:Node* _node;Node* _root;
};template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;public:typedef RBTreeIterator<T, T&, T*> Iterator;typedef RBTreeIterator<T, const T&, const T*> ConstIterator;Iterator Begin(){Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return Iterator(cur, _root);}Iterator End(){return Iterator(nullptr, _root);}ConstIterator Begin() const{Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return ConstIterator(cur, _root);}ConstIterator End() const{return ConstIterator(nullptr, _root);}private:Node* _root = nullptr;
};//Myset.h
namespace xzy
{template<class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public://取类中的类型需要加上typename,为了区分静态成员变量typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}bool insert(const K& key){return _t.Insert(key);}private:RBTree<K, const K, SetKeyOfT> _t;};
}//Mymap.h
namespace xzy
{template<class K, class V>class map{//仿函数用于插入时比较Key的大小struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public://取类中的类型需要加上typename,为了区分静态成员变量typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}bool insert(const pair<K, V>& kv){return _t.Insert(kv);}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}
3.map支持 operator [] 的实现
- map要支持 operator [] 主要需要修改insert返回值修改RBtree中的insert返回值为
pair<Iterator, bool> Insert(const T& data)
- 有了 insert 支持 operator [] 实现就很简单了,具体参考下面代码实现
//RBTree.h
pair<Iterator, bool> Insert(const T& data)
{if (_root == nullptr){_root = new Node(data);_root->_col = BLACK; //空树插入的节点必须是黑色//return pair<Iterator, bool>(Iterator(_root, _root), true);return { Iterator(_root, _root), true };}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return { Iterator(cur, _root), false };}}cur = new Node(data);Node* newnode = cur;cur->_col = RED; //非空树插入的节点必须是红色if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}//链接父亲cur->_parent = parent;//变色、旋转逻辑...return { Iterator(newnode, _root), true };
}//Mymap.h
pair<iterator, bool> insert(const pair<K, V>& kv)
{return _t.Insert(kv);
}V& operator[](const K& key)
{pair<iterator, bool> ret = insert({ key, V() });return ret.first->second;
}
3.总代码
1.RBTree.h
#pragma once#include<iostream>
using namespace std;enum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{T _data;RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;Colour _col;RBTreeNode(const T& data):_data(data), _left(nullptr), _right(nullptr), _parent(nullptr){}
};template<class T, class Ref, class Ptr>
class RBTreeIterator
{typedef RBTreeNode<T> Node;typedef RBTreeIterator<T, Ref, Ptr> Self;public:RBTreeIterator(Node* node, Node* root):_node(node),_root(root){}Self& operator++(){if (_node->_right){//右不为空,中序下一个访问的节点是右子树的最左(最小)结点Node* min = _node->_right;while (min->_left){min = min->_left;}_node = min;}else{//右为空,祖先里面孩子是父亲左的那个祖先Node* cur = _node;Node* parent = cur->_parent;while (parent && parent->_right == cur){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Self& operator--(){if (_node == nullptr) // --end(){// --end(),特殊处理,走到中序最后一个结点,整棵树的最右结点Node* rightMost = _root;while (rightMost && rightMost->_right){rightMost = rightMost->_right;}_node = rightMost;}else if (_node->_left){// 左子树不为空,中序左子树最后一个Node* rightMost = _node->_left;while (rightMost->_right){rightMost = rightMost->_right;}_node = rightMost;}else{// 孩子是父亲右的那个祖先Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_left){cur = parent;parent = cur->_parent;}_node = parent;}return *this;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const Self& s) const{return _node != s._node;}bool operator==(const Self& s) const{return _node == s._node;}private:Node* _node;Node* _root;
};//KeyOfT:获取T中的Key,其中T是红黑树存储的数据
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;public:typedef RBTreeIterator<T, T&, T*> Iterator;typedef RBTreeIterator<T, const T&, const T*> ConstIterator;Iterator Begin(){Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return Iterator(cur, _root);}Iterator End(){return Iterator(nullptr, _root);}ConstIterator Begin() const{Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return ConstIterator(cur, _root);}ConstIterator End() const{return ConstIterator(nullptr, _root);}pair<Iterator, bool> Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK; //空树插入的节点必须是黑色//return pair<Iterator, bool>(Iterator(_root, _root), true);return { Iterator(_root, _root), true };}KeyOfT kot;Node* parent = nullptr;Node* cur = _root;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return { Iterator(cur, _root), false };}}cur = new Node(data);Node* newnode = cur;cur->_col = RED; //非空树插入的节点必须是红色if (kot(parent->_data) < kot(data)){parent->_right = cur;}else{parent->_left = cur;}//链接父亲cur->_parent = parent;//当父亲非空且是红色时:开始循环while (parent && parent->_col == RED){Node* grandfather = parent->_parent; //该节点一定是黑色if (grandfather->_left == parent){// g// p uNode* uncle = grandfather->_right;if (uncle && uncle->_col == RED) //叔叔存在且为红{parent->_col = uncle->_col = BLACK;grandfather->_col = RED;//继续往上处理cur = grandfather;parent = cur->_parent;}else //叔叔不存在或者叔叔存在且为黑{if (parent->_left == cur) //g右单旋{// g// p u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else //p左单旋、g右单旋{// g// p u// cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{// g// u pNode* uncle = grandfather->_left;if (uncle && uncle->_col == RED){uncle->_col = parent->_col = BLACK;grandfather->_col = RED;//继续往上处理cur = grandfather;parent = cur->_parent;}else{if (parent->_right == cur){// g// u p// cRotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// u p// cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK; //根节点必须是黑色return { Iterator(newnode, _root), true };}Node* Find(const K& key){Node* cur = _root;while (cur){if (kot(cur->_data) < key){cur = cur->_right;}else if (kot(cur->_data) > key){cur = cur->_left;}else{return cur;}}return nullptr;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;//记录parent的父节点Node* pParent = parent->_parent;subL->_right = parent;parent->_parent = subL;//当parent是根节点时if (parent == _root){_root = subL;subL->_parent = nullptr;}else //当parent不是根节点时{subL->_parent = pParent;if (pParent->_left == parent)pParent->_left = subL;elsepParent->_right = subL;}}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;//记录parent的父节点Node* pParent = parent->_parent;subR->_left = parent;parent->_parent = subR;//当parent是根节点时if (parent == _root){_root = subR;subR->_parent = nullptr;}else //当parent不是根节点时{subR->_parent = pParent;if (pParent->_left == parent)pParent->_left = subR;elsepParent->_right = subR;}}private:Node* _root = nullptr;
};
2.Myset.h
#pragma once#include"RBTree.h"namespace xzy
{template<class K>class set{struct SetKeyOfT{const K& operator()(const K& key){return key;}};public://取类中的类型需要加上typename,为了区分静态成员变量typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}pair<iterator, bool> insert(const K& key){return _t.Insert(key);}private:RBTree<K, const K, SetKeyOfT> _t;};
}
3.Mymap.h
#pragma once#include"RBTree.h"namespace xzy
{template<class K, class V>class map{//仿函数用于插入时比较Key的大小struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};public://取类中的类型需要加上typename,为了区分静态成员变量typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;iterator begin(){return _t.Begin();}iterator end(){return _t.End();}const_iterator begin() const{return _t.Begin();}const_iterator end() const{return _t.End();}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.Insert(kv);}V& operator[](const K& key){pair<iterator, bool> ret = insert({ key, V() });return ret.first->second;}private:RBTree<K, pair<const K, V>, MapKeyOfT> _t;};
}
4.Test.cpp
#define _CRT_SECURE_NO_WARNINGS 1#include"Myset.h"
#include"Mymap.h"void TestSet()
{xzy::set<int> s;s.insert(1);s.insert(3);s.insert(5);s.insert(4);s.insert(2);xzy::set<int>::iterator sit = s.begin();while (sit != s.end()){//*sit += 10; set中的Key不能被修改cout << *sit << " ";++sit;}cout << endl;for (auto& e : s){cout << e << " ";}cout << endl;
}void TestMap()
{xzy::map<string, string> dict;dict.insert({ "sort", "排序" });dict.insert({ "left", "左边" });dict.insert({ "right", "右边" });dict["left"] = "左边,剩余";dict["insert"] = "插入";dict["string"];xzy::map<string, string>::iterator mit = dict.begin();while (mit != dict.end()){//mit->first += "1"; map中的Key不能被修改//mit->second += "1"; map中的Value能被修改//cout << mit.operator->()->first << ":" << mit.operator->()->second << endl;cout << mit->first << ":" << mit->second << endl;++mit;}cout << endl;for (auto& kv : dict){cout << kv.first << ":" << kv.second << endl;}cout << endl;
}void TestReverse()
{xzy::set<int> s;s.insert(1);s.insert(3);s.insert(5);s.insert(4);s.insert(2);//模拟反向迭代器xzy::set<int>::const_iterator it = s.end();while (it != s.begin()){--it;cout << *it << " ";}cout << endl;
}int main()
{TestSet();TestMap();TestReverse();return 0;
}