目录
摘要
Abstract
DETR
1、网络结构
2、如何生成预测框
3、如何实现端到端
4、参数传递过程
5、代码
总结
摘要
Detection Transformer是一种基于Transformer架构的目标检测模型,它革新了传统目标检测的方法。传统目标检测模型通常依赖于手工设计的特征提取器和复杂的后处理步骤,而DETR则采用端到端的方式,直接预测目标物体的类别和边界框。DETR简化了目标检测流程,提高了检测精度,并实现了对多尺度目标的鲁棒检测。本篇博客将详细讲解DETR目标检测模型,以及附上PyTorch运行结果。
Abstract
Detection Transformer is an object detection model based on Transformer architecture, which revolutionizes traditional object detection methods. Traditional object detection models typically rely on manually designed feature extractors and complex post-processing steps, while DETR adopts an end-to-end approach to directly predict the category and bounding box of the target object. DETR simplifies the object detection process, improves detection accuracy, and achieves robust detection of multi-scale objects. This blog will provide a detailed explanation of the DETR object detection model and attach the PyTorch running results.
DETR
Object Detection with Transformers是端到端的目标检测框架,该网络模型没有使用非极大值抑制法去掉冗余框,也没有采用生成anchor的方式预测框,提高了目标检测的速度。DETR采用了新的目标函数,以二分图匹配的方式输出独一无二的预测框,我们来具体看看DETR是如何工作的吧!
1、网络结构
DETR的骨干网络采用的是ResNet-50进行图像特征提取,如上图所示CNN部分。将ResNet提取特征之后的特征图像拉直。然后,送入Transformer之中提取全局特征,全局特征的学习更有利于大目标的识别,能够很好的预测框。set of box predictions处会产生100个固定数量的预测框,这是作者人为设定的Query数(下文第2点会详细说到)。最后,将预测的100个框进行集合预测,确定出最终的预测框个数,再与图像标记的ground truth框进行误差计算,得以训练DETR。没有匹配的预测框则标记为背景类。
2、如何生成预测框
Transformer网络结构图,如下图所示:
我们知道在Transformer中encoder负责学习全局特征,这样有利于decoder更好的去进行解码预测。在decoder解码中,也需要输入,即上图中的Outputs处。Transformer是通过decoder处的输入的Query去和encoder输出的Key进行掩码自注意力得出预测结果。
我的理解是这样的,可能画图更好解释:
这里的Q为什么会选择100呢?因为作者采用COCO数据集进行训练,单张图片中最多出现几十种目标,所以100的预测框数量对于该数据集目标的预测是绰绰有余的。
但是,这样不就有多余的框出现了吗?如何做到端到端呢?多的冗余框不又和生成anchor的形式一样了,又需要去除多余的框。下文第3点会详细解释。
3、如何实现端到端
作者运用了一种新的目标函数,实现端到端的检测。上图中的 N 即为第2点中提到的Query,作者采用 N=100 ,是远大于图像目标的数量的。所以100个预测框,作者采用二分图匹配的形式与ground truth框进行一对一的匹配,就无需非极大值抑制处理。
具体来说,假设a、b、c点到达X、Y、Z点分别有着不同的代价,而它们分别到达每一点的代价图称为cost matrix。在scipy中的linear-sum-assignment函数能够计算出最优化匹配,使得abc到达XYZ的总价值最小。
在DETR中,我们可以理解为a、b、c代表着100个预测框,而X、Y、Z代表ground truth框。遍历所有预测框和ground truth框计算cost,得到最终的cost matrix。cost计算公式如下所示:
然后,利用scipy中的linear-sum-assignment函数计算出cost matrix的最优化匹配。这样九实现了预测框和真实框的一对一匹配,没有出现冗余的框。
最后,在将预测框和真实框进行类别预测和框预测的损失计算,即可反向传播优化模型。损失函数公式如下所示:
4、参数传递过程
DETR输入 800x1066x3 的图像,通过backbone提取图像特征,CNN模块下采样32倍,得到 25x34x2048 的特征图像,在与位置编码相加之前,会进行降维操作至 25x34x256 。位置编码维度和backbone输出相同,都是 25x34x256 ,因为便于相加操作。
在输入进encoder之前会将 25x34x256 的特征图像进行拉直变为 850x256 ,即850=25x34,共850个输入,每个输入256维。经过 6 个encoder之后的输出仍为 850x256 ,再将其传入decoder。
上图decoder中的object queries就是上文提到的Q=100,即向encoder的输出中解码出100个预测框。经过 6 个decoder之后输出 100x256 的特征向量,将其传入预测头prediction heads。
prediction heads会有很多个平行的全连接网络FFN,若需要预测类别(class box),则FFN是 1x91 的卷积层;若进行框回归(no object),则FFN是 1x4 的卷积层。
最后,在100个预测框都有了对应的类别预测和框预测,就需要和右图中的真实框进行最优匹配,得以去除冗余框;再通过反向传播,得以更新参数。
5、代码
作者提供了一个简短的代码,以了解DETR的整个模型结构,其代码十分简洁,如下图所示:
骨干网络采用ResNet-50,该骨干网络在ImageNet上预训练,DETR模型训练PyTorch代码如下:
#-------------------------------------#
# 对数据集进行训练
#-------------------------------------#
import datetime
import os
from functools import partialimport numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoaderfrom nets.detr import DETR
from nets.detr_training import (build_loss, get_lr_scheduler, set_optimizer_lr,weights_init)
from utils.callbacks import EvalCallback, LossHistory
from utils.dataloader import DetrDataset, detr_dataset_collate
from utils.utils import (get_classes, seed_everything, show_config,worker_init_fn)
from utils.utils_fit import fit_one_epochif __name__ == "__main__":#---------------------------------## Cuda 是否使用Cuda# 没有GPU可以设置成False#---------------------------------#Cuda = True#----------------------------------------------## Seed 用于固定随机种子# 使得每次独立训练都可以获得一样的结果#----------------------------------------------#seed = 11#---------------------------------------------------------------------## distributed 用于指定是否使用单机多卡分布式运行# 终端指令仅支持Ubuntu。CUDA_VISIBLE_DEVICES用于在Ubuntu下指定显卡。# Windows系统下默认使用DP模式调用所有显卡,不支持DDP。# DP模式:# 设置 distributed = False# 在终端中输入 CUDA_VISIBLE_DEVICES=0,1 python train.py# DDP模式:# 设置 distributed = True# 在终端中输入 CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py#---------------------------------------------------------------------#distributed = False#---------------------------------------------------------------------## fp16 是否使用混合精度训练# 可减少约一半的显存、需要pytorch1.7.1以上#---------------------------------------------------------------------#fp16 = False#---------------------------------------------------------------------## classes_path 指向model_data下的txt,与自己训练的数据集相关 # 训练前一定要修改classes_path,使其对应自己的数据集#---------------------------------------------------------------------#classes_path = 'model_data/voc_classes.txt'#----------------------------------------------------------------------------------------------------------------------------## 权值文件的下载请看README,可以通过网盘下载。模型的 预训练权重 对不同数据集是通用的,因为特征是通用的。# 模型的 预训练权重 比较重要的部分是 主干特征提取网络的权值部分,用于进行特征提取。# 预训练权重对于99%的情况都必须要用,不用的话主干部分的权值太过随机,特征提取效果不明显,网络训练的结果也不会好## 如果训练过程中存在中断训练的操作,可以将model_path设置成logs文件夹下的权值文件,将已经训练了一部分的权值再次载入。# 同时修改下方的 冻结阶段 或者 解冻阶段 的参数,来保证模型epoch的连续性。# # 当model_path = ''的时候不加载整个模型的权值。## 此处使用的是整个模型的权重,因此是在train.py进行加载的,下面的pretrain不影响此处的权值加载。# 如果想要让模型从主干的预训练权值开始训练,则设置model_path = '',下面的pretrain = True,此时仅加载主干。# 如果想要让模型从0开始训练,则设置model_path = '',下面的pretrain = Fasle,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。# # 一般来讲,网络从0开始的训练效果会很差,因为权值太过随机,特征提取效果不明显,因此非常、非常、非常不建议大家从0开始训练!# 如果一定要从0开始,可以了解imagenet数据集,首先训练分类模型,获得网络的主干部分权值,分类模型的 主干部分 和该模型通用,基于此进行训练。#----------------------------------------------------------------------------------------------------------------------------#model_path = 'model_data/detr_resnet50_weights_coco.pth'#------------------------------------------------------## input_shape 输入的shape大小#------------------------------------------------------#input_shape = [800, 800]#---------------------------------------------## resnet50# resnet101#---------------------------------------------#backbone = "resnet50"#----------------------------------------------------------------------------------------------------------------------------## pretrained 是否使用主干网络的预训练权重,此处使用的是主干的权重,因此是在模型构建的时候进行加载的。# 如果设置了model_path,则主干的权值无需加载,pretrained的值无意义。# 如果不设置model_path,pretrained = True,此时仅加载主干开始训练。# 如果不设置model_path,pretrained = False,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。#----------------------------------------------------------------------------------------------------------------------------#pretrained = False#----------------------------------------------------------------------------------------------------------------------------## 训练分为两个阶段,分别是冻结阶段和解冻阶段。设置冻结阶段是为了满足机器性能不足的同学的训练需求。# 冻结训练需要的显存较小,显卡非常差的情况下,可设置Freeze_Epoch等于UnFreeze_Epoch,此时仅仅进行冻结训练。# # 在此提供若干参数设置建议,各位训练者根据自己的需求进行灵活调整:# (一)从整个模型的预训练权重开始训练: # AdamW:# Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adamw',Init_lr = 1e-4,weight_decay = 1e-4。(冻结)# Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adamw',Init_lr = 1e-4,weight_decay = 1e-4。(不冻结)# 其中:UnFreeze_Epoch可以在100-300之间调整。# (二)从主干网络的预训练权重开始训练:# AdamW:# Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 300,Freeze_Train = True,optimizer_type = 'adamw',Init_lr = 1e-4,weight_decay = 1e-4。(冻结)# Init_Epoch = 0,UnFreeze_Epoch = 300,Freeze_Train = False,optimizer_type = 'adamw',Init_lr = 1e-4,weight_decay = 1e-4。(不冻结)# 其中:由于从主干网络的预训练权重开始训练,主干的权值不一定适合目标检测,需要更多的训练跳出局部最优解。# UnFreeze_Epoch可以在150-300之间调整,YOLOV5和YOLOX均推荐使用300。# Adam相较于SGD收敛的快一些。因此UnFreeze_Epoch理论上可以小一点,但依然推荐更多的Epoch。# (三)batch_size的设置:# 在显卡能够接受的范围内,以大为好。显存不足与数据集大小无关,提示显存不足(OOM或者CUDA out of memory)请调小batch_size。# 受到BatchNorm层影响,batch_size最小为2,不能为1。# 正常情况下Freeze_batch_size建议为Unfreeze_batch_size的1-2倍。不建议设置的差距过大,因为关系到学习率的自动调整。#----------------------------------------------------------------------------------------------------------------------------##------------------------------------------------------------------## 冻结阶段训练参数# 此时模型的主干被冻结了,特征提取网络不发生改变# 占用的显存较小,仅对网络进行微调# Init_Epoch 模型当前开始的训练世代,其值可以大于Freeze_Epoch,如设置:# Init_Epoch = 60、Freeze_Epoch = 50、UnFreeze_Epoch = 100# 会跳过冻结阶段,直接从60代开始,并调整对应的学习率。# (断点续练时使用)# Freeze_Epoch 模型冻结训练的Freeze_Epoch# (当Freeze_Train=False时失效)# Freeze_batch_size 模型冻结训练的batch_size# (当Freeze_Train=False时失效)#------------------------------------------------------------------#Init_Epoch = 0Freeze_Epoch = 50Freeze_batch_size = 8#------------------------------------------------------------------## 解冻阶段训练参数# 此时模型的主干不被冻结了,特征提取网络会发生改变# 占用的显存较大,网络所有的参数都会发生改变# UnFreeze_Epoch 模型总共训练的epoch# SGD需要更长的时间收敛,因此设置较大的UnFreeze_Epoch# Adam可以使用相对较小的UnFreeze_Epoch# Unfreeze_batch_size 模型在解冻后的batch_size#------------------------------------------------------------------#UnFreeze_Epoch = 300Unfreeze_batch_size = 4#------------------------------------------------------------------## Freeze_Train 是否进行冻结训练# 默认先冻结主干训练后解冻训练。#------------------------------------------------------------------#Freeze_Train = True#------------------------------------------------------------------## 其它训练参数:学习率、优化器、学习率下降有关#------------------------------------------------------------------##------------------------------------------------------------------## Init_lr 模型的最大学习率,在DETR中,Backbone的学习率为Transformer模块的0.1倍# Min_lr 模型的最小学习率,默认为最大学习率的0.01#------------------------------------------------------------------#Init_lr = 1e-4Min_lr = Init_lr * 0.01#------------------------------------------------------------------## optimizer_type 使用到的优化器种类,可选的有adam、sgd# 当使用Adam优化器时建议设置 Init_lr=1e-4# 当使用AdamW优化器时建议设置 Init_lr=1e-4# 当使用SGD优化器时建议设置 Init_lr=1e-2# momentum 优化器内部使用到的momentum参数# weight_decay 权值衰减,可防止过拟合# adam会导致weight_decay错误,使用adam时建议设置为0。#------------------------------------------------------------------#optimizer_type = "adamw"momentum = 0.9weight_decay = 1e-4#------------------------------------------------------------------## lr_decay_type 使用到的学习率下降方式,可选的有step、cos#------------------------------------------------------------------#lr_decay_type = "cos"#------------------------------------------------------------------## save_period 多少个epoch保存一次权值#------------------------------------------------------------------#save_period = 10#------------------------------------------------------------------## save_dir 权值与日志文件保存的文件夹#------------------------------------------------------------------#save_dir = 'logs'#------------------------------------------------------------------## eval_flag 是否在训练时进行评估,评估对象为验证集# 安装pycocotools库后,评估体验更佳。# eval_period 代表多少个epoch评估一次,不建议频繁的评估# 评估需要消耗较多的时间,频繁评估会导致训练非常慢# 此处获得的mAP会与get_map.py获得的会有所不同,原因有二:# (一)此处获得的mAP为验证集的mAP。# (二)此处设置评估参数较为保守,目的是加快评估速度。#------------------------------------------------------------------#eval_flag = Trueeval_period = 10#------------------------------------------------------------------## 官方提示为TODO this is a hack# 稳定性未知,默认为不开启#------------------------------------------------------------------#aux_loss = False#------------------------------------------------------------------## num_workers 用于设置是否使用多线程读取数据# 开启后会加快数据读取速度,但是会占用更多内存# 内存较小的电脑可以设置为2或者0 #------------------------------------------------------------------#num_workers = 4#----------------------------------------------------## 获得图片路径和标签#----------------------------------------------------#train_annotation_path = '2007_train.txt'val_annotation_path = '2007_val.txt'seed_everything(seed)#------------------------------------------------------## 设置用到的显卡#------------------------------------------------------#ngpus_per_node = torch.cuda.device_count()if distributed:dist.init_process_group(backend="nccl")local_rank = int(os.environ["LOCAL_RANK"])rank = int(os.environ["RANK"])device = torch.device("cuda", local_rank)if local_rank == 0:print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...")print("Gpu Device Count : ", ngpus_per_node)else:device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')local_rank = 0rank = 0#----------------------------------------------------## 获取classes和anchor#----------------------------------------------------#class_names, num_classes = get_classes(classes_path)#------------------------------------------------------## 创建detr模型#------------------------------------------------------#model = DETR(backbone, 'sine', 256, num_classes, 100, pretrained=pretrained)if model_path != '':#------------------------------------------------------## 权值文件请看README,百度网盘下载#------------------------------------------------------#if local_rank == 0:print('Load weights {}.'.format(model_path))#------------------------------------------------------## 根据预训练权重的Key和模型的Key进行加载#------------------------------------------------------#model_dict = model.state_dict()pretrained_dict = torch.load(model_path, map_location = device)load_key, no_load_key, temp_dict = [], [], {}for k, v in pretrained_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vload_key.append(k)else:no_load_key.append(k)model_dict.update(temp_dict)model.load_state_dict(model_dict)#------------------------------------------------------## 显示没有匹配上的Key#------------------------------------------------------#if local_rank == 0:print("\nSuccessful Load Key:", str(load_key)[:500], "……\nSuccessful Load Key Num:", len(load_key))print("\nFail To Load Key:", str(no_load_key)[:500], "……\nFail To Load Key num:", len(no_load_key))print("\n\033[1;33;44m温馨提示,head部分没有载入是正常现象,Backbone部分没有载入是错误的。\033[0m")#----------------------## 获得损失函数#----------------------#detr_loss = build_loss(num_classes)#----------------------## 记录Loss#----------------------#if local_rank == 0:time_str = datetime.datetime.strftime(datetime.datetime.now(),'%Y_%m_%d_%H_%M_%S')log_dir = os.path.join(save_dir, "loss_" + str(time_str))loss_history = LossHistory(log_dir, model, input_shape=input_shape)else:loss_history = None#------------------------------------------------------------------## torch 1.2不支持amp,建议使用torch 1.7.1及以上正确使用fp16# 因此torch1.2这里显示"could not be resolve"#------------------------------------------------------------------#if fp16:from torch.cuda.amp import GradScaler as GradScalerscaler = GradScaler()else:scaler = Nonemodel_train = model.train()if Cuda:if distributed:#----------------------------## 多卡平行运行#----------------------------#model_train = model_train.cuda(local_rank)detr_loss = detr_loss.cuda(local_rank)model_train = torch.nn.parallel.DistributedDataParallel(model_train, device_ids=[local_rank], find_unused_parameters=True)else:model_train = torch.nn.DataParallel(model)cudnn.benchmark = Truemodel_train = model_train.cuda()detr_loss = detr_loss.cuda()#---------------------------## 读取数据集对应的txt#---------------------------#with open(train_annotation_path) as f:train_lines = f.readlines()with open(val_annotation_path) as f:val_lines = f.readlines()num_train = len(train_lines)num_val = len(val_lines)if local_rank == 0:show_config(classes_path = classes_path, model_path = model_path, input_shape = input_shape, \Init_Epoch = Init_Epoch, Freeze_Epoch = Freeze_Epoch, UnFreeze_Epoch = UnFreeze_Epoch, \Freeze_batch_size = Freeze_batch_size, Unfreeze_batch_size = Unfreeze_batch_size, Freeze_Train = Freeze_Train, \Init_lr = Init_lr, Min_lr = Min_lr, optimizer_type = optimizer_type, momentum = momentum, lr_decay_type = lr_decay_type, \save_period = save_period, save_dir = save_dir, num_workers = num_workers, num_train = num_train, num_val = num_val)#---------------------------------------------------------## 总训练世代指的是遍历全部数据的总次数# 总训练步长指的是梯度下降的总次数 # 每个训练世代包含若干训练步长,每个训练步长进行一次梯度下降。# 此处仅建议最低训练世代,上不封顶,计算时只考虑了解冻部分#----------------------------------------------------------#wanted_step = 5e4 if optimizer_type == "sgd" else 1.5e4total_step = num_train // Unfreeze_batch_size * UnFreeze_Epochif total_step <= wanted_step:if num_train // Unfreeze_batch_size == 0:raise ValueError('数据集过小,无法进行训练,请扩充数据集。')wanted_epoch = wanted_step // (num_train // Unfreeze_batch_size) + 1print("\n\033[1;33;44m[Warning] 使用%s优化器时,建议将训练总步长设置到%d以上。\033[0m"%(optimizer_type, wanted_step))print("\033[1;33;44m[Warning] 本次运行的总训练数据量为%d,Unfreeze_batch_size为%d,共训练%d个Epoch,计算出总训练步长为%d。\033[0m"%(num_train, Unfreeze_batch_size, UnFreeze_Epoch, total_step))print("\033[1;33;44m[Warning] 由于总训练步长为%d,小于建议总步长%d,建议设置总世代为%d。\033[0m"%(total_step, wanted_step, wanted_epoch))#------------------------------------------------------## 主干特征提取网络特征通用,冻结训练可以加快训练速度# 也可以在训练初期防止权值被破坏。# Init_Epoch为起始世代# Freeze_Epoch为冻结训练的世代# UnFreeze_Epoch总训练世代# 提示OOM或者显存不足请调小Batch_size#------------------------------------------------------#if True:UnFreeze_flag = False#------------------------------------## 冻结一定部分训练#------------------------------------#if Freeze_Train:for param in model.backbone.parameters():param.requires_grad = False# ------------------------------------## 冻结bn层# ------------------------------------#model.freeze_bn()#-------------------------------------------------------------------## 如果不冻结训练的话,直接设置batch_size为Unfreeze_batch_size#-------------------------------------------------------------------#batch_size = Freeze_batch_size if Freeze_Train else Unfreeze_batch_size#-------------------------------------------------------------------## 判断当前batch_size,自适应调整学习率#-------------------------------------------------------------------#if optimizer_type in ['adam', 'adamw']:Init_lr_fit = Init_lrMin_lr_fit = Min_lrelse:nbs = 64lr_limit_max = 5e-2lr_limit_min = 5e-4Init_lr_fit = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)Min_lr_fit = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)#---------------------------------------## 根据optimizer_type选择优化器#---------------------------------------#param_dicts = [{"params": [p for n, p in model.named_parameters() if "backbone" not in n]},{"params": [p for n, p in model.named_parameters() if "backbone" in n],"lr": Init_lr_fit / 10,},]optimizer = {'adam' : optim.Adam(param_dicts, Init_lr_fit, betas = (momentum, 0.999), weight_decay=weight_decay),'adamw' : optim.AdamW(param_dicts, Init_lr_fit, betas = (momentum, 0.999), weight_decay=weight_decay),'sgd' : optim.SGD(param_dicts, Init_lr_fit, momentum = momentum, nesterov=True, weight_decay=weight_decay),}[optimizer_type]lr_scale_ratio = [1, 0.1]#---------------------------------------## 获得学习率下降的公式#---------------------------------------#lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)#---------------------------------------## 判断每一个世代的长度#---------------------------------------#epoch_step = num_train // batch_sizeepoch_step_val = num_val // batch_sizeif epoch_step == 0 or epoch_step_val == 0:raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")#---------------------------------------## 构建数据集加载器。#---------------------------------------#train_dataset = DetrDataset(train_lines, input_shape, num_classes, train = True)val_dataset = DetrDataset(val_lines, input_shape, num_classes, train = False)if distributed:train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True,)val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False,)batch_size = batch_size // ngpus_per_nodeshuffle = Falseelse:train_sampler = Noneval_sampler = Noneshuffle = Truegen = DataLoader(train_dataset, shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,drop_last=True, collate_fn=detr_dataset_collate, sampler=train_sampler, worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))gen_val = DataLoader(val_dataset , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=detr_dataset_collate, sampler=val_sampler, worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))#----------------------## 记录eval的map曲线#----------------------#if local_rank == 0:eval_callback = EvalCallback(model, input_shape[0], class_names, num_classes, val_lines, log_dir, Cuda, \eval_flag=eval_flag, period=eval_period)else:eval_callback = None#---------------------------------------## 开始模型训练#---------------------------------------#for epoch in range(Init_Epoch, UnFreeze_Epoch):#---------------------------------------## 如果模型有冻结学习部分# 则解冻,并设置参数#---------------------------------------#if epoch >= Freeze_Epoch and not UnFreeze_flag and Freeze_Train:batch_size = Unfreeze_batch_size#-------------------------------------------------------------------## 判断当前batch_size,自适应调整学习率#-------------------------------------------------------------------#if optimizer_type in ['adam', 'adamw']:Init_lr_fit = Init_lrMin_lr_fit = Min_lrelse:nbs = 64lr_limit_max = 5e-2lr_limit_min = 5e-4Init_lr_fit = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)Min_lr_fit = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)#---------------------------------------## 获得学习率下降的公式#---------------------------------------#lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)for param in model.backbone.parameters():param.requires_grad = True# ------------------------------------## 冻结bn层# ------------------------------------#model.freeze_bn()epoch_step = num_train // batch_sizeepoch_step_val = num_val // batch_sizeif epoch_step == 0 or epoch_step_val == 0:raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")if distributed:batch_size = batch_size // ngpus_per_nodegen = DataLoader(train_dataset, shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,drop_last=True, collate_fn=detr_dataset_collate, sampler=train_sampler, worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))gen_val = DataLoader(val_dataset , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, drop_last=True, collate_fn=detr_dataset_collate, sampler=val_sampler, worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))UnFreeze_flag = Trueif distributed:train_sampler.set_epoch(epoch)set_optimizer_lr(optimizer, lr_scheduler_func, epoch, lr_scale_ratio)fit_one_epoch(model_train, model, detr_loss, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)if distributed:dist.barrier()if local_rank == 0:loss_history.writer.close()
DETR网络模型如下:
import colorsys
import os
import timeimport numpy as np
import torch
import torch.nn as nn
from PIL import ImageDraw, ImageFontfrom nets.detr import DETR
from utils.utils import (cvtColor, get_classes, preprocess_input,resize_image, show_config)
from utils.utils_bbox import DecodeBox'''
训练自己的数据集必看注释!
'''
class Detection_Transformers(object):_defaults = {#--------------------------------------------------------------------------## 使用自己训练好的模型进行预测一定要修改model_path和classes_path!# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt## 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。# 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改#--------------------------------------------------------------------------#"model_path" : 'logs/best_epoch_weights.pth',"classes_path" : 'model_data/voc_classes.txt',#---------------------------------------------------------------------## 输入图片的大小#---------------------------------------------------------------------#"min_length" : 800,#---------------------------------------------------------------------## 只有得分大于置信度的预测框会被保留下来#---------------------------------------------------------------------#"confidence" : 0.5,#---------------------------------------------------------------------## 主干网络的种类#---------------------------------------------------------------------#"backbone" : 'resnet50',#-------------------------------## 是否使用Cuda# 没有GPU可以设置成False#-------------------------------#"cuda" : True,}@classmethoddef get_defaults(cls, n):if n in cls._defaults:return cls._defaults[n]else:return "Unrecognized attribute name '" + n + "'"#---------------------------------------------------## 初始化detr#---------------------------------------------------#def __init__(self, **kwargs):self.__dict__.update(self._defaults)for name, value in kwargs.items():setattr(self, name, value)self._defaults[name] = value #---------------------------------------------------## 获得种类和先验框的数量#---------------------------------------------------#self.class_names, self.num_classes = get_classes(self.classes_path)self.bbox_util = DecodeBox()#---------------------------------------------------## 画框设置不同的颜色#---------------------------------------------------#hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))self.generate()show_config(**self._defaults)#---------------------------------------------------## 生成模型#---------------------------------------------------#def generate(self, onnx=False):#---------------------------------------------------## 建立detr模型,载入detr模型的权重#---------------------------------------------------#self.net = DETR(self.backbone, 'sine', 256, self.num_classes, num_queries=100)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')self.net.load_state_dict(torch.load(self.model_path, map_location=device))self.net = self.net.eval()print('{} model, anchors, and classes loaded.'.format(self.model_path))if not onnx:if self.cuda:self.net = nn.DataParallel(self.net)self.net = self.net.cuda()#---------------------------------------------------## 检测图片#---------------------------------------------------#def detect_image(self, image, crop = False, count = False):image_shape = np.array(np.shape(image)[0:2])#---------------------------------------------------------## 在这里将图像转换成RGB图像,防止灰度图在预测时报错。# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB#---------------------------------------------------------#image = cvtColor(image)#---------------------------------------------------------## 给图像增加灰条,实现不失真的resize# 也可以直接resize进行识别#---------------------------------------------------------#image_data = resize_image(image, self.min_length)#---------------------------------------------------------## 添加上batch_size维度#---------------------------------------------------------#image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)with torch.no_grad():images = torch.from_numpy(image_data)images_shape = torch.unsqueeze(torch.from_numpy(image_shape), 0)if self.cuda:images = images.cuda()images_shape = images_shape.cuda()#---------------------------------------------------------## 将图像输入网络当中进行预测!#---------------------------------------------------------#outputs = self.net(images)results = self.bbox_util(outputs, images_shape, self.confidence)if results[0] is None: return image_results = results[0].cpu().numpy()top_label = np.array(_results[:, 5], dtype = 'int32')top_conf = _results[:, 4]top_boxes = _results[:, :4]#---------------------------------------------------------## 设置字体与边框厚度#---------------------------------------------------------#font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))thickness = int(max((image.size[0] + image.size[1]) // self.min_length, 1))#---------------------------------------------------------## 计数#---------------------------------------------------------#if count:print("top_label:", top_label)classes_nums = np.zeros([self.num_classes])for i in range(self.num_classes):num = np.sum(top_label == i)if num > 0:print(self.class_names[i], " : ", num)classes_nums[i] = numprint("classes_nums:", classes_nums)#---------------------------------------------------------## 是否进行目标的裁剪#---------------------------------------------------------#if crop:for i, c in list(enumerate(top_label)):top, left, bottom, right = top_boxes[i]top = max(0, np.floor(top).astype('int32'))left = max(0, np.floor(left).astype('int32'))bottom = min(image.size[1], np.floor(bottom).astype('int32'))right = min(image.size[0], np.floor(right).astype('int32'))dir_save_path = "img_crop"if not os.path.exists(dir_save_path):os.makedirs(dir_save_path)crop_image = image.crop([left, top, right, bottom])crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0)print("save crop_" + str(i) + ".png to " + dir_save_path)#---------------------------------------------------------## 图像绘制#---------------------------------------------------------#for i, c in list(enumerate(top_label)):predicted_class = self.class_names[int(c)]box = top_boxes[i]score = top_conf[i]top, left, bottom, right = boxtop = max(0, np.floor(top).astype('int32'))left = max(0, np.floor(left).astype('int32'))bottom = min(image.size[1], np.floor(bottom).astype('int32'))right = min(image.size[0], np.floor(right).astype('int32'))label = '{} {:.2f}'.format(predicted_class, score)draw = ImageDraw.Draw(image)label_size = draw.textsize(label, font)label = label.encode('utf-8')print(label, top, left, bottom, right)if top - label_size[1] >= 0:text_origin = np.array([left, top - label_size[1]])else:text_origin = np.array([left, top + 1])for i in range(thickness):draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)del drawreturn imagedef get_FPS(self, image, test_interval):image_shape = np.array(np.shape(image)[0:2])image = cvtColor(image)image_data = resize_image(image, self.min_length)image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)with torch.no_grad():images = torch.from_numpy(image_data)images_shape = torch.unsqueeze(torch.from_numpy(image_shape), 0)if self.cuda:images = images.cuda()images_shape = images_shape.cuda()outputs = self.net(images)results = self.bbox_util(outputs, images_shape, self.confidence)t1 = time.time()for _ in range(test_interval):with torch.no_grad():images = torch.from_numpy(image_data)images_shape = torch.unsqueeze(torch.from_numpy(image_shape), 0)if self.cuda:images = images.cuda()images_shape = images_shape.cuda()outputs = self.net(images)results = self.bbox_util(outputs, images_shape, self.confidence)t2 = time.time()tact_time = (t2 - t1) / test_intervalreturn tact_timedef convert_to_onnx(self, simplify, model_path):import onnxself.generate(onnx=True)im = torch.zeros(1, 3, *self.input_shape).to('cpu') # image size(1, 3, 512, 512) BCHWinput_layer_names = ["images"]output_layer_names = ["output"]# Export the modelprint(f'Starting export with onnx {onnx.__version__}.')torch.onnx.export(self.net,im,f = model_path,verbose = False,opset_version = 12,training = torch.onnx.TrainingMode.EVAL,do_constant_folding = True,input_names = input_layer_names,output_names = output_layer_names,dynamic_axes = None)# Checksmodel_onnx = onnx.load(model_path) # load onnx modelonnx.checker.check_model(model_onnx) # check onnx model# Simplify onnxif simplify:import onnxsimprint(f'Simplifying with onnx-simplifier {onnxsim.__version__}.')model_onnx, check = onnxsim.simplify(model_onnx,dynamic_input_shape=False,input_shapes=None)assert check, 'assert check failed'onnx.save(model_onnx, model_path)print('Onnx model save as {}'.format(model_path))def get_map_txt(self, image_id, image, class_names, map_out_path):f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"),"w") image_shape = np.array(np.shape(image)[0:2])#---------------------------------------------------------## 在这里将图像转换成RGB图像,防止灰度图在预测时报错。# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB#---------------------------------------------------------#image = cvtColor(image)#---------------------------------------------------------## 给图像增加灰条,实现不失真的resize# 也可以直接resize进行识别#---------------------------------------------------------#image_data = resize_image(image, self.min_length)#---------------------------------------------------------## 添加上batch_size维度#---------------------------------------------------------#image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)with torch.no_grad():images = torch.from_numpy(image_data)images_shape = torch.unsqueeze(torch.from_numpy(image_shape), 0)if self.cuda:images = images.cuda()images_shape = images_shape.cuda()#---------------------------------------------------------## 将图像输入网络当中进行预测!#---------------------------------------------------------#outputs = self.net(images)results = self.bbox_util(outputs, images_shape, self.confidence)if results[0] is None: return _results = results[0].cpu().numpy()top_label = np.array(_results[:, 5], dtype = 'int32')top_conf = _results[:, 4]top_boxes = _results[:, :4]for i, c in list(enumerate(top_label)):predicted_class = self.class_names[int(c)]box = top_boxes[i]score = str(top_conf[i])top, left, bottom, right = boxif predicted_class not in class_names:continuef.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))f.close()return
将训练好的模型参数引入DETR代码中,再进行预测操作,代码如下:
import timeimport cv2
import numpy as np
from PIL import Imagefrom detr import Detection_Transformersif __name__ == "__main__":detr = Detection_Transformers()mode = "predict"#-------------------------------------------------------------------------## crop 指定了是否在单张图片预测后对目标进行截取# count 指定了是否进行目标的计数# crop、count仅在mode='predict'时有效#-------------------------------------------------------------------------#crop = Falsecount = False#----------------------------------------------------------------------------------------------------------## video_path 用于指定视频的路径,当video_path=0时表示检测摄像头# 想要检测视频,则设置如video_path = "xxx.mp4"即可,代表读取出根目录下的xxx.mp4文件。# video_save_path 表示视频保存的路径,当video_save_path=""时表示不保存# 想要保存视频,则设置如video_save_path = "yyy.mp4"即可,代表保存为根目录下的yyy.mp4文件。# video_fps 用于保存的视频的fps## video_path、video_save_path和video_fps仅在mode='video'时有效# 保存视频时需要ctrl+c退出或者运行到最后一帧才会完成完整的保存步骤。#----------------------------------------------------------------------------------------------------------#video_path = 0video_save_path = ""video_fps = 25.0#----------------------------------------------------------------------------------------------------------## test_interval 用于指定测量fps的时候,图片检测的次数。理论上test_interval越大,fps越准确。# fps_image_path 用于指定测试的fps图片# # test_interval和fps_image_path仅在mode='fps'有效#----------------------------------------------------------------------------------------------------------#test_interval = 100fps_image_path = "img/street.jpg"#-------------------------------------------------------------------------## dir_origin_path 指定了用于检测的图片的文件夹路径# dir_save_path 指定了检测完图片的保存路径# # dir_origin_path和dir_save_path仅在mode='dir_predict'时有效#-------------------------------------------------------------------------#dir_origin_path = "img/"dir_save_path = "img/"#-------------------------------------------------------------------------## simplify 使用Simplify onnx# onnx_save_path 指定了onnx的保存路径#-------------------------------------------------------------------------#simplify = Trueonnx_save_path = "model_data/models.onnx"if mode == "predict":'''1、如果想要进行检测完的图片的保存,利用r_image.save("img.jpg")即可保存,直接在predict.py里进行修改即可。 2、如果想要获得预测框的坐标,可以进入detr.detect_image函数,在绘图部分读取top,left,bottom,right这四个值。3、如果想要利用预测框截取下目标,可以进入detr.detect_image函数,在绘图部分利用获取到的top,left,bottom,right这四个值在原图上利用矩阵的方式进行截取。4、如果想要在预测图上写额外的字,比如检测到的特定目标的数量,可以进入detr.detect_image函数,在绘图部分对predicted_class进行判断,比如判断if predicted_class == 'car': 即可判断当前目标是否为车,然后记录数量即可。利用draw.text即可写字。'''while True:img = input('Input image filename:')try:image = Image.open(img)except:print('Open Error! Try again!')continueelse:r_image = detr.detect_image(image, crop = crop, count=count)r_image.show()elif mode == "video":capture = cv2.VideoCapture(video_path)if video_save_path!="":fourcc = cv2.VideoWriter_fourcc(*'XVID')size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)ref, frame = capture.read()if not ref:raise ValueError("未能正确读取摄像头(视频),请注意是否正确安装摄像头(是否正确填写视频路径)。")fps = 0.0while(True):t1 = time.time()# 读取某一帧ref, frame = capture.read()if not ref:break# 格式转变,BGRtoRGBframe = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)# 转变成Imageframe = Image.fromarray(np.uint8(frame))# 进行检测frame = np.array(detr.detect_image(frame))# RGBtoBGR满足opencv显示格式frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)fps = ( fps + (1./(time.time()-t1)) ) / 2print("fps= %.2f"%(fps))frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.imshow("video",frame)c= cv2.waitKey(1) & 0xff if video_save_path!="":out.write(frame)if c==27:capture.release()breakprint("Video Detection Done!")capture.release()if video_save_path!="":print("Save processed video to the path :" + video_save_path)out.release()cv2.destroyAllWindows()elif mode == "fps":img = Image.open(fps_image_path)tact_time = detr.get_FPS(img, test_interval)print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1')elif mode == "dir_predict":import osfrom tqdm import tqdmimg_names = os.listdir(dir_origin_path)for img_name in tqdm(img_names):if img_name.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):image_path = os.path.join(dir_origin_path, img_name)image = Image.open(image_path)r_image = detr.detect_image(image)if not os.path.exists(dir_save_path):os.makedirs(dir_save_path)r_image.save(os.path.join(dir_save_path, img_name.replace(".jpg", ".png")), quality=95, subsampling=0)elif mode == "export_onnx":detr.convert_to_onnx(simplify, onnx_save_path)else:raise AssertionError("Please specify the correct mode: 'predict', 'video', 'fps', 'export_onnx', 'dir_predict'.")
输入图像:
DETR预测结果如下:
总结
本周的学习到此结束,至此目标检测网络最主要的几种模型也已经学习完毕,下周将进行新的板块的学习,探索和拓宽一下自己后期需要深入研究的方向,如果各位有好的建议,还请不吝赐教。
若有错误,请各位大佬指出,谢谢!