以下是今天学习的知识点以及代码测试:
Spark Core
Spark-Core编程(四)
23) sortByKey
➢ 函数签名
def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
: RDD[(K, V)]
➢ 函数说明
在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回一个按照 key 进行排序
val dataRDD1 = sc.makeRDD(List(("a",1),("b",2),("c",3)))
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(true)
val sortRDD2: RDD[(String, Int)] = dataRDD1.sortByKey(false)
24) join
➢ 函数签名
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
➢ 函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的
(K,(V,W))的 RDD
val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))
val rdd1: RDD[(Int, Int)] = sc.makeRDD(Array((1, 4), (2, 5), (3, 6)))
rdd.join(rdd1).collect().foreach(println)
25) leftOuterJoin
➢ 函数签名
def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
➢ 函数说明
类似于 SQL 语句的左外连接
val dataRDD1 = sc.makeRDD(List(("a",1),("b",2),("c",4)))
val dataRDD2 = sc.makeRDD(List(("a",1),("b",2),("c",3)))
val rdd: RDD[(String, (Int, Option[Int]))] = dataRDD1.leftOuterJoin(dataRDD2)
26) cogroup
➢ 函数签名
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
➢ 函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的 RDD
val dataRDD1 = sc.makeRDD(List(("a",1),("a",2),("c",3)))
val dataRDD2 = sc.makeRDD(List(("a",1),("c",2),("c",3)))
val value: RDD[(String, (Iterable[Int], Iterable[Int]))] =
dataRDD1.cogroup(dataRDD2)
Spark Core
Spark-Core编程(五)
RDD行动算子:
行动算子就是会触发action的算子,触发action的含义就是真正的计算数据。
1) reduce
➢ 函数签名
def reduce(f: (T, T) => T): T
➢ 函数说明
聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val reduceResult: Int = rdd.reduce(_+_)
println(reduceResult)
2) collect
➢ 函数签名
def collect(): Array[T]
➢ 函数说明
在驱动程序中,以数组 Array 的形式返回数据集的所有元素
3) foreach
➢ 函数签名
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
➢ 函数说明
分布式遍历 RDD 中的每一个元素,调用指定函数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
rdd.collect().foreach(println)
4) count
➢ 函数签名
def count(): Long
➢ 函数说明
返回 RDD 中元素的个数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val countResult: Long = rdd.count()
println(countResult)
5) first
➢ 函数签名
def first(): T
➢ 函数说明
返回 RDD 中的第一个元素
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val firstResult: Int = rdd.first()
println(firstResult)
6) take
➢ 函数签名
def take(num: Int): Array[T]
➢ 函数说明
返回一个由 RDD 的前 n 个元素组成的数组
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
val takeResult: Array[Int] = rdd.take(2)
takeResult.foreach(println)
7) takeOrdered
➢ 函数签名
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
➢ 函数说明
返回该 RDD 排序后的前 n 个元素组成的数组
val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))
val result: Array[Int] = rdd.takeOrdered(2)
result.foreach(println)
8) aggregate
➢ 函数签名
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
➢ 函数说明
分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4),8)
// 将该 RDD 所有元素相加得到结果
val result1: Int = rdd.aggregate(0)(_+_, _+_)
val result2: Int = rdd.aggregate(10)(_+_,_+_)
println(result1)
println("**********")
9) fold
➢ 函数签名
def fold(zeroValue: T)(op: (T, T) => T): T
➢ 函数说明
折叠操作,aggregate 的简化版操作
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)
println(foldResult)
10) countByKey
➢ 函数签名
def countByKey(): Map[K, Long]
➢ 函数说明
统计每种 key 的个数
val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2,"b"), (3, "c"), (3, "c")))
val result: collection.Map[Int, Long] = rdd.countByKey()
print(result)
11) save 相关算子
➢ 函数签名
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
path: String,
codec: Option[Class[_ <: CompressionCodec]] = None): Unit //了解即可
➢ 函数说明
将数据保存到不同格式的文件中
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
// 保存成 Text 文件
rdd.saveAsTextFile("Spark-core/output/output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("Spark-core/output/output1")
Spark Core
Spark-Core编程(六)
累加器
实现原理
累加器用来把 Executor 端变量信息聚合到 Driver 端。在 Driver 程序中定义的变量,在
Executor 端的每个 Task 都会得到这个变量的一份新的副本,每个 task 更新这些副本的值后,传回 Driver 端进行 merge。
val rdd = sparkContext.makeRDD(List(1,2,3,4,5))
// 声明累加器
var sum = sparkContext.longAccumulator("sum");
rdd.foreach(
num => {
// 使用累加器
sum.add(num)
}
)
// 获取累加器的值
println("sum = " + sum.value)
自定义累加器实现wordcount:
创建自定义累加器:
class WordCountAccumulator extends AccumulatorV2[String,mutable.Map[String,Long]] {
var map:mutable.Map[String,Long] = mutable.Map()
override def isZero: Boolean = map.isEmpty
override def copy(): AccumulatorV2[String, mutable.Map[String,Long]] = new WordCountAccumulator
override def reset(): Unit = map.clear()
override def add(v: String): Unit = {
map(v) = map.getOrElse(v,0L)+1L
}
override def merge(other: AccumulatorV2[String, mutable.Map[String,Long]
]): Unit = {
val map1 = map
val map2 = other.value
map = map1.foldLeft(map2)(
(innerMap,kv)=>{
innerMap(kv._1) = innerMap.getOrElse(kv._1,0L)+kv._2
innerMap
}
)
}
override def value: mutable.Map[String,Long] = map
}
调用自定义累加器:
val rdd = sparkContext.makeRDD(
List("spark","scala","spark hadoop","hadoop")
)
val acc = new WordCountAccumulator
sparkContext.register(acc)
rdd.flatMap(_.split(" ")).foreach(
word=>acc.add(word)
)
println(acc.value)
实现原理
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个
或多个 Spark 操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,
广播变量用起来都很顺手。在多个并行操作中使用同一个变量,但是 Spark 会为每个任务
分别发送。
val rdd1 = sparkContext.makeRDD(List( ("a",1), ("b", 2), ("c", 3), ("d", 4) ),4)
val list = List( ("a",4), ("b", 5), ("c", 6), ("d", 7))
val broadcast :Broadcast[List[(String,Int)]] = sparkContext.broadcast(list)
val resultRDD :RDD[(String,(Int,Int))] = rdd1.map{
case (key,num)=> {
var num2 = 0
for((k,v)<-broadcast.value){
if(k == key) {
num2 = v
}
}
(key,(num,num2))
}
}
resultRDD.collect().foreach(println)
sparkContext.stop()
}