您的位置:首页 > 科技 > 能源 > 高端建筑图片_广东省汕头市潮南区疫情最新消息_创量广告投放平台_全球最大的中文搜索引擎

高端建筑图片_广东省汕头市潮南区疫情最新消息_创量广告投放平台_全球最大的中文搜索引擎

2025/4/18 19:54:43 来源:https://blog.csdn.net/kjm13182345320/article/details/147016062  浏览:    关键词:高端建筑图片_广东省汕头市潮南区疫情最新消息_创量广告投放平台_全球最大的中文搜索引擎
高端建筑图片_广东省汕头市潮南区疫情最新消息_创量广告投放平台_全球最大的中文搜索引擎

Transformer+BO-SVM多变量时间序列预测(Matlab)

目录

    • Transformer+BO-SVM多变量时间序列预测(Matlab)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

本期推出一期高创新模型,基于Transformer提取时序特征后输入SVM之中预测,同时采用贝叶斯算法选择最佳的SVM核函数参数c和g,模型支撑风电预测、光伏预测、交通预测、股票预测等领域,先用先发,不要犹豫!

1.Transformer+BO-SVM多变量时间序列预测,Transformer+BO-SVM/Bayes-SVM(程序可以作为论文创新支撑,目前尚未发表);

2.Transformer提取特征后,贝叶斯算法选择最佳的SVM核函数参数c和g,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个变量,输出单个变量,考虑历史特征的影响,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Transformer+BO-SVM多变量时间序列预测(Matlab)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);T_sim1 = T_sim1';
T_sim2 = T_sim2';%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));% MBE
MBE1 = sum(T_sim1 - T_train) ./ M ;
MBE2 = sum(T_sim2 - T_test ) ./ N ;%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com