您的位置:首页 > 科技 > 能源 > 微信下载安装免费2022_中国建筑设计行业网_怎样推广公司的网站_外贸企业网站制作哪家好

微信下载安装免费2022_中国建筑设计行业网_怎样推广公司的网站_外贸企业网站制作哪家好

2025/4/17 13:47:26 来源:https://blog.csdn.net/u013600306/article/details/146111517  浏览:    关键词:微信下载安装免费2022_中国建筑设计行业网_怎样推广公司的网站_外贸企业网站制作哪家好
微信下载安装免费2022_中国建筑设计行业网_怎样推广公司的网站_外贸企业网站制作哪家好

标量对向量求导的常用数学公式

设标量函数 y = f ( x ) y = f(\boldsymbol{x}) y=f(x),其中 x = ( x 1 , x 2 , ⋯ , x n ) T \boldsymbol{x} = (x_1, x_2, \cdots, x_n)^{\rm T} x=(x1,x2,,xn)T是一个 n n n维列向量。标量 y y y对向量 x \boldsymbol{x} x的导数为一个 n n n维列向量:
∂ y ∂ x = [ ∂ y ∂ x 1 ∂ y ∂ x 2 ⋮ ∂ y ∂ x n ] \frac{\partial y}{\partial \boldsymbol{x}} = \begin{bmatrix} \dfrac{\partial y}{\partial x_1} \\ \dfrac{\partial y}{\partial x_2} \\ \vdots \\ \dfrac{\partial y}{\partial x_n} \end{bmatrix} xy= x1yx2yxny

  1. 线性函数:若 y = a T x y = \boldsymbol{a}^{\rm T} \boldsymbol{x} y=aTx,其中 a \boldsymbol{a} a是一个 n n n维列向量,则

∂ y ∂ x = a \frac{\partial y}{\partial \boldsymbol{x}} = \boldsymbol{a} xy=a

  1. 二次型函数:若 y = x T A x y = \boldsymbol{x}^{\rm T} {\bm A} \boldsymbol{x} y=xTAx,其中 A {\bm A} A是一个 n × n n \times n n×n的矩阵,则

∂ y ∂ x = ( A + A T ) x \frac{\partial y}{\partial \boldsymbol{x}} = ({\bm A} + {\bm A}^{\rm T}) \boldsymbol{x} xy=(A+AT)x

A {\bm A} A为对称矩阵时, A T = A {\bm A}^{\rm T} = {\bm A} AT=A,则

∂ y ∂ x = 2 A x \frac{\partial y}{\partial \boldsymbol{x}} = 2{\bm A} \boldsymbol{x} xy=2Ax
A {\bm A} A为单位矩阵时, y = x T x y = \boldsymbol{x}^{\rm T} \boldsymbol{x} y=xTx,则

∂ y ∂ x = ∂ ∥ x ∥ 2 ∂ x = ∂ x T x ∂ x = 2 x \frac{\partial y}{\partial \boldsymbol{x}} = \frac{\partial \|{\bm x}\|^2}{\partial {\bm x}} = \frac{\partial {\bm x}^{\rm T} {\bm x}}{\partial {\bm x}} =2{\bm x} xy=xx2=xxTx=2x
∥ x ∥ 2 \|{\bm x}\|^2 x2表示向量 x {\bm x} x的范数(长度)的平方。

向量对向量求导的常用数学公式

y = A x {\bm y}= {\bm A} \boldsymbol{x} y=Ax,其中 A {\bm A} A是一个 n × n n \times n n×n的矩阵,则
∂ y ∂ x = ∂ A x ∂ x = A T \frac{\partial {\bm y}}{\partial \boldsymbol{x}} = \frac{\partial {\bm A}{\bm x}}{\partial {\bm x}} = {\bm A}^{\rm T} xy=xAx=AT

A {\bm A} A是一个矩阵, x {\bm x} x是一个向量。
x {\bm x} x求导的结果是矩阵 A {\bm A} A的转置 A T {\bm A}^{\rm T} AT

复合函数的导数

给定函数 g ( u ( x ) ) g(u(x)) g(u(x)),其中 u = u ( x ) = b − A x {\bm u}=u({\bm x}) = {\bm b} - {\bm A}{\bm x} u=u(x)=bAx,且 g ( u ) = ∥ u ∥ 2 g({\bm u}) = \|{\bm u}\|^2 g(u)=u2

链式法则

根据链式法则(Chain Rule),有:
∂ g ( u ( x ) ) ∂ x = ∂ g ∂ u ⋅ ∂ u ∂ x \frac{\partial g(u({\bm x}))}{\partial {\bm x}} = \frac{\partial g}{\partial {\bm u}} \cdot \frac{\partial {\bm u}}{\partial {\bm x}} xg(u(x))=ugxu

具体步骤
  1. 计算 ∂ u ∂ x \dfrac{\partial {\bm u}}{\partial {\bm x}} xu:
    u ( x ) = b − A x {\bm u}({\bm x}) = {\bm b} - {\bm A}{\bm x} u(x)=bAx
    x {\bm x} x求导得到:
    ∂ u ∂ x = − A \frac{\partial {\bm u}}{\partial {\bm x}} = -{\bm A} xu=A

  2. 计算 ∂ g ( u ) ∂ u \dfrac{\partial g({\bm u})}{\partial {\bm u}} ug(u):
    g ( u ) = ∥ u ∥ 2 = u T u g({\bm u}) = \|{\bm u}\|^2 = {\bm u}^{\rm T} {\bm u} g(u)=u2=uTu
    u {\bm u} u求导得到:
    ∂ g ( u ) ∂ u = 2 u \frac{\partial g({\bm u})}{\partial {\bm u}} = 2{\bm u} ug(u)=2u

  3. 应用链式法则:
    ∂ g ( u ( x ) ) ∂ x = ∂ g ( u ) ∂ u ⋅ ∂ u ∂ x \frac{\partial g(u({\bm x}))}{\partial {\bm x}} = \frac{\partial g({\bm u})}{\partial {\bm u}} \cdot \frac{\partial {\bm u}}{\partial {\bm x}} xg(u(x))=ug(u)xu
    将上面的结果代入:
    ∂ g ( u ( x ) ) ∂ x = 2 u ⋅ ( − A ) \frac{\partial g({\bm u}({\bm x}))}{\partial {\bm x}} = 2{\bm u} \cdot (-{\bm A}) xg(u(x))=2u(A)
    由于 u = b − A x {\bm u} = {\bm b} - {\bm A}{\bm x} u=bAx,代入得到:
    ∂ g ( u ( x ) ) ∂ x = − 2 A T ( b − A x ) \frac{\partial g({u}({\bm x}))}{\partial {\bm x}} = -2{\bm A}^{\rm T} ({\bm b} - {\bm A}{\bm x}) xg(u(x))=2AT(bAx)

最终结果是:
∂ ∥ b − A x ∥ 2 ∂ x = − 2 A T ( b − A x ) \frac{\partial \|{\bm b} - {\bm A}{\bm x}\|^2}{\partial {\bm x}} = -2{\bm A}^{\rm T} ({\bm b} - {\bm A}{\bm x}) xbAx2=2AT(bAx)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com