您的位置:首页 > 科技 > IT业 > 无经验学电商要多久_dw属于什么的网页制作工具_百度推广关键词质量度_找竞价托管公司

无经验学电商要多久_dw属于什么的网页制作工具_百度推广关键词质量度_找竞价托管公司

2025/1/9 23:08:47 来源:https://blog.csdn.net/My_Champion/article/details/145003931  浏览:    关键词:无经验学电商要多久_dw属于什么的网页制作工具_百度推广关键词质量度_找竞价托管公司
无经验学电商要多久_dw属于什么的网页制作工具_百度推广关键词质量度_找竞价托管公司

1.  微分的定义


(1)定义:设函数f(x)在点x_{0}的某领域内有定义,取x_{0}附近的点x_{0}+\Delta x,对应的函数值分别为f(x_{0})f(x_{0}+\Delta x)

                    令\Delta y=f(x_{0}+\Delta x)-f(x_{0}),若\Delta y可以表示成\Delta y=A\Delta x+o(\Delta x),则称函数f(x)在点x_{0}是可微的。

                  \Rightarrow 若函数f(x)在点x_{0}是可微的,则\Delta y=f(x_{0}+\Delta x)-f(x_{0})可以表达为\Delta y=A\Delta x+o(\Delta x)

                    称A\Delta x为函数f(x)在点x_{0}处,改变量\Delta y的微分。记作:可微:dy=A\Delta x;微分:dy|_{x=x_{0}}=A\Delta x

备注:

①:通过绘图理解:A是与\Delta x无关的量,但与x_{0}有关,A就是函数f(x)在点x_{0}处的导数,即{f}'(x_{0})

②:通过绘图理解:根据\Delta y=dy+o(\Delta x)可知,当\Delta x\rightarrow 0时,dy\rightarrow \Delta y,则有dy \approx\Delta y

③:函数的微分dy是函数的增量\Delta y主要部分,且是\Delta x的线性函数,故称函数的微分dy是函数的增量\Delta y的线性主部。

④:通常把自变量x的增量\Delta x称为自变量的微分,记作dx,即dx=\Delta x

⑤:对于一元函数而言:可导即可微,可微即可导。

⑥:一元函数求微分的表达式:dy = {f}'(x)dx\Rightarrow 想求微分,先求导,然后左右两边同乘dx

(2)几何意义:通过绘图理解:函数的微分dy是函数f(x)在点x_{0}处的切线对应于\Delta x在纵坐标上的增量。

备注:\Delta y:属于精确值;dy:属于\Delta y的近似值。即:dy \approx\Delta y

(3)实际应用:

  ①:根据\Delta y \approx dy={f}'(x_{0})\Delta x,即:f(x_{0}+\Delta x)-f(x_{0})\approx {f}'(x_{0})\Delta x可得:f(x_{0}+\Delta x)\approx f(x_{0})+{f}'(x_{0})\Delta x

         \Rightarrow 可以把线性函数的数值计算结果作为原本函数的数值的近似值(\Delta x的值选取要尽可能的小)。

  ②:根据\Delta y=dy+o(\Delta x)可知,当|\Delta x|比较小时,|\Delta y-dy||\Delta x|要小的多(高阶无穷小),因此函数f(x)在点x_{0}附近可以

         用切线来近似代替曲线段。它的直接应用就是函数的线性化。

         \Rightarrow 当|\Delta x|比较小时,则有:sinx\approx xtanx\approx xe^{x} \approx 1+xln(1+x)\approx x(1+x)^{\alpha }\approx 1+\alpha x

导数与微分的区别:导数解决的是函数的变化率的问题;微分解决的是函数的增量的问题。


2.  微分的中值定理


(1)费马引理:设函数f(x)在点x_{0}的某领域内有定义,且在x_{0}点处可导,对于点x_{0}的某领域内任意x,若f(x)\leq f(x_{0})

                            f(x)\geq f(x_{0}),则函数f(x)在点x_{0}处的导数为零,即{f}'(x_{0})=0(斜率为零)。

(2)罗尔中值定理:设函数f(x)在①:闭区间[a,b]连续,②:开区间(a,b)可导,③:f(a)=f(b),则在开区间(a,b)上,

                                   至少存在一点\xi \in (a,b),使得{f}'(\xi )=0

                                   \Rightarrow 说明函数f(x)图像的切线斜率,存在为0的情况。

(3)拉格朗日中值定理:设函数f(x)在①:闭区间[a,b]连续,②:开区间(a,b)可导,则在开区间(a,b)上,至少存在一点\xi \in (a,b)

                                          使得f(b)-f(a)={f}'(\xi )(b-a)

                                          \Rightarrow 说明函数f(x)图像的切线的斜率与由点a和点b所确定的直线的斜率,存在相等的情况。

备注:

①:设函数f(x)在区间I上连续、可导且导数恒为0,则函数f(x)\equiv C(C为常数)。

②:当x>0时,有:\frac{x}{1+x}<ln(1+x)<x

(4)柯西中值定理:设函数f(x)g(x)在①:闭区间[a,b]连续,②:开区间(a,b)可导,③:\forall x\in (a,b){g}'(x)\neq 0

                                   则在开区间(a,b)上,至少存在一点\xi \in (a,b),使得\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{​{f}'(\xi )}{​{g}'(\xi )}

备注:柯西中值定理与拉格朗日中值定理最终表示的含义都是一样的。


版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com