您的位置:首页 > 科技 > IT业 > ux与ui设计的区别_百度识图查另一半情头网页版_软文媒体_seo关键词排名技术

ux与ui设计的区别_百度识图查另一半情头网页版_软文媒体_seo关键词排名技术

2025/1/8 10:32:41 来源:https://blog.csdn.net/lida2003/article/details/144977640  浏览:    关键词:ux与ui设计的区别_百度识图查另一半情头网页版_软文媒体_seo关键词排名技术
ux与ui设计的区别_百度识图查另一半情头网页版_软文媒体_seo关键词排名技术

Ardupilot开源无人机之Geek SDK进展202501

  • 1. 源由
  • 2. 状态
  • 3. TODO
    • 3.1 跟踪目标框
    • 3.2 onnxruntime版本
    • 3.3 CUDA 11.8版本
    • 3.4 pytorch v2.5.1版本
    • 3.5 Inference性能
    • 3.6 特定目标集Training
  • 4. 参考资料

1. 源由

前期搭建《Ardupilot开源无人机之Geek SDK》,主要目的是:

  1. 基于:《ArduPilot开源飞控系统 - 无人车、船、飞机等》
  2. 验证:《Ardupilot & OpenIPC & 基于WFB-NG构架分析和数据链路思考》可行性
  3. 框架:打通硬实时、软实时的控制面和数据面链路,提供一个简单、多样、高效的验证平台 jetson-fpv

2. 状态

  • 简单示例

  • 框架成型:jetson-fpv

  • 支持特性:

    • FPV features (FPV功能)

      • MSPOSD for ground station (OSD)
      • video-viewer (视频图像,可以达到120FPS)
      • Adaptive wireless link (链路自适应)
    • Jetson video analysis (Jetson推理功能)

      • detectnet for object detection
      • segnet for segmentation
      • posenet for pose estimation
      • imagenet for image recognition
    • yolo for object detection (YOLO目标检测)

    • Real time video stabilizer

    • DeepStream analysis (DeepStream目标跟踪分析)

      • ByteTrack
      • NvDCF tracker
  • 硬件形态
    在这里插入图片描述在这里插入图片描述

3. TODO

优先级
3.2 onnxruntime版本 > 3.1 跟踪目标框 > 3.5 Inference性能 > 3.6 特定目标集Training > 3.3 CUDA 11.8版本 > 3.4 pytorch v2.5.1版本

3.1 跟踪目标框

  • DeepStream-Yolo - How to keep the bounding boxes when interval is NOT zero? #604
  • NVIDIA - How to keep the bounding boxes when interval is NOT zero?

3.2 onnxruntime版本

  • Yolov8s no bounding box on default settings #597
  • NVIDIA - Build onnxruntime v1.19.2 for Jetpack 5.1.4 L4T 35.6 Faild
  • microsoft/onnxruntime - Build onnxruntime v1.19.2 for Jetpack 5.1.4 L4T 35.6 Faild #23267
  • [Build] Trying to build on a embedded device that doesn’t support BFLOAT16 #19920
  • mlas: fix build on ARM64 #21099
  • arm64: force -mcpu to be valid #21117

3.3 CUDA 11.8版本

  • How to install CUDA 11.8 on Jetpack 5.1.4 L4T 35.6?
  • Linux 35.5 + JetPack v5.1.3@CUDA安装和版本切换

3.4 pytorch v2.5.1版本

  • pytorch v2.5.1 build for nvidia jetson orin nano 8GB #143624
  • Linux 35.6 + JetPack v5.1.4之 pytorch编译
  • Linux 35.6 + JetPack v5.1.4之 pytorch升级

3.5 Inference性能

  • DeepStream-Yolo - Anyway to boost yolo performance on Jetson Orin? #605
  • NVIDIA - Anyway to boost yolo performance on Jetson Orin?

A: DeepStream-Yolo - INT8 calibration (PTQ)
B: NVIDIA - NvDCF tracker plugin

3.6 特定目标集Training

TBD.

4. 参考资料

【1】Ardupilot & OpenIPC & 基于WFB-NG构架分析和数据链路思考
【2】ArduPilot开源飞控之MAVProxy深入研读系列 - 2蜂群链路
【3】Ardupilot开源飞控之FollowMe计划
【4】Ardupilot开源飞控之FollowMe验证平台搭建
【5】Ardupilot开源无人机之Geek SDK讨论
【6】OpenIPC开源FPV之工程框架
【7】OpenIPC开源FPV之重要源码启动配置
【8】wfb-ng 开源代码之Jetson Orin安装
【9】wfb-ng 开源代码之Jetson Orin问题定位
【10】Linux 35.5 + JetPack v5.1.3@CUDA安装和版本切换
【11】Linux 35.6 + JetPack v5.1.4@yolo安装
【12】Linux 35.6 + JetPack v5.1.4@python opencv安装
【13】Linux 35.6 + JetPack v5.1.4@DeepStream安装
【14】Linux 35.6 + JetPack v5.1.4之RTP实时视频Python框架
【15】Linux 35.6 + JetPack v5.1.4之 pytorch编译
【16】Linux 35.6 + JetPack v5.1.4之 pytorch升级
【17】OpenIPC开源FPV之Adaptive-Link工程解析
【18】NVIDIA DeepStream插件之Gst-nvtracker

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com