您的位置:首页 > 科技 > 能源 > 智慧团建网站链接_企业logo设计注意事项_网站ui设计_软文营销案例分析

智慧团建网站链接_企业logo设计注意事项_网站ui设计_软文营销案例分析

2025/1/4 5:27:41 来源:https://blog.csdn.net/GZM888888/article/details/144857197  浏览:    关键词:智慧团建网站链接_企业logo设计注意事项_网站ui设计_软文营销案例分析
智慧团建网站链接_企业logo设计注意事项_网站ui设计_软文营销案例分析

LangChain4j与Elasticsearch:构建高效的语义嵌入存储

一、LangChain4j与Elasticsearch集成概述

1.1 LangChain4j简介

LangChain4j是一个为Java开发者设计的开源库,旨在简化大型语言模型(LLM)在Java应用程序中的集成。它提供了与多个LLM提供商、嵌入存储、嵌入模型等的集成,支持文本和图像输入,以及AI服务的高级API。

1.2 Elasticsearch在LangChain4j中的作用

Elasticsearch是一个基于Lucene的搜索引擎,提供了全文搜索和分析功能。在LangChain4j中,Elasticsearch被用作嵌入存储,用于存储和检索语义嵌入向量,从而提高搜索和检索的效率。

二、Elasticsearch作为嵌入存储的集成

2.1 为什么选择Elasticsearch

LangChain4j提供了内存嵌入存储,但对于更大的数据集,内存存储不适用,因为服务器内存有限。Elasticsearch的“弹性”特性使其能够根据数据量进行扩展,因此,将嵌入存储到Elasticsearch中是一个理想的选择。

2.2 添加Elasticsearch依赖

要在项目中集成Elasticsearch,需要添加以下Maven依赖:

<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-elasticsearch</artifactId><version>${langchain4j.version}</version>
</dependency>
<dependency><groupId>org.testcontainers</groupId><artifactId>elasticsearch</artifactId><version>1.20.1</version><scope>test</scope>
</dependency>

这些依赖包括LangChain4j的Elasticsearch集成模块和TestContainers模块,后者用于在测试中启动Elasticsearch实例。

三、配置和使用Elasticsearch嵌入存储

3.1 启动Elasticsearch容器

使用TestContainers模块启动Elasticsearch实例:

ElasticsearchContainer container =new ElasticsearchContainer("docker.elastic.co/elasticsearch/elasticsearch:8.15.0").withPassword("changeme");
container.start();
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials("elastic", "changeme"));
client = RestClient.builder(HttpHost.create("https://" + container.getHttpHostAddress())).setHttpClientConfigCallback(httpClientBuilder -> {httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider);httpClientBuilder.setSSLContext(container.createSslContextFromCa());return httpClientBuilder;}).build();
client.performRequest(new Request("GET", "/"));

这段代码创建并启动了一个Elasticsearch容器,并配置了客户端以连接到该容器。

3.2 使用Elasticsearch作为嵌入存储

将Elasticsearch设置为LangChain4j的嵌入存储:

EmbeddingStore<TextSegment> embeddingStore =ElasticsearchEmbeddingStore.builder().restClient(client).build();
embeddingStore.add(response1.content(), game1);
embeddingStore.add(response2.content(), game2);

这段代码将向量存储在Elasticsearch的默认索引中。也可以指定一个更有意义的索引名称:

EmbeddingStore<TextSegment> embeddingStore =ElasticsearchEmbeddingStore.builder().indexName("games").restClient(client).build();
embeddingStore.add(response1.content(), game1);
embeddingStore.add(response2.content(), game2);

四、搜索相似向量

4.1 向量化查询

要搜索相似向量,首先需要使用模型将查询转换为向量表示:

String question = "I want to pilot a car";
Embedding questionAsVector = model.embed(question).content();

4.2 执行相似性搜索

使用嵌入存储执行相似性搜索:

EmbeddingSearchResult<TextSegment> result = embeddingStore.search(EmbeddingSearchRequest.builder().queryEmbedding(questionAsVector).build());

这段代码在Elasticsearch中搜索与查询向量相似的向量。

五、总结

LangChain4j与Elasticsearch的集成提供了一个强大的解决方案,用于处理和检索语义嵌入向量。通过将Elasticsearch作为嵌入存储,可以有效地扩展处理大数据集的能力,并提高搜索相关性。这种方法结合了LangChain4j的灵活性和Elasticsearch的可扩展性,为构建高效的语义搜索应用提供了坚实的基础。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com