您的位置:首页 > 科技 > 能源 > 建站工具缺点_网络建设原则_网络营销是什么专业_百度在西安有分公司吗

建站工具缺点_网络建设原则_网络营销是什么专业_百度在西安有分公司吗

2024/12/23 10:11:38 来源:https://blog.csdn.net/smartcat2010/article/details/144324439  浏览:    关键词:建站工具缺点_网络建设原则_网络营销是什么专业_百度在西安有分公司吗
建站工具缺点_网络建设原则_网络营销是什么专业_百度在西安有分公司吗

LLama-1(7B, 13B, 33B, 65B参数量;1.4T tokens训练数据量)

要做真正Open的AI

Efficient:同等预算下,增大训练数据,比增大模型参数量,效果要更好

训练数据:

书、Wiki这种量少、质量高的数据,训了2轮。

模型改动:

silu激活函数:

LLama-2 (7B, 13B, 70B参数量;2T tokens预训练数据量)

训练流程:

PreTrain + SFT微调 + RLHF强化学习;

安全Reward model, 有用Reward model;

效果:观察到,数据量继续增大的话,还可继续提升效果;

引入了GQA(Group Query Attention):

通过把K和V复制多份来实现的

只在70B模型上,用的GQA:

总共64个head,8个一组,一共有8个Query head和8个Value head。

LLama-3(8B,70B,即将放出的400B,15T tokens预训练数据量)

放出的400B测评,有些指标超过了GPT4;

Word embedding量从3.2万,扩大了4倍,到12.8万。好处:推理效率增加,原来1个中文字词被编码至多个tokens,现在只编码到1个token,减少了推理input和output的token数量。

训练数据:

有研究表明,Code训练数据,对大模型的推理能力提升,有重要作用。因此这里加大了Code的训练数据量。

用LLama2来做预训练数据的质量过滤器。

训练:

用小模型的表现,预测大模型的表现,OpenAI先掌握的,Meta后掌握。

2个24000张H100 GPU卡的集群。

LLama3-Instruct: SFT, Rejection Sampling, DPO, PPO

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com