您的位置:首页 > 科技 > IT业 > 基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM

基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM

2024/12/23 15:32:12 来源:https://blog.csdn.net/soft_algorithm/article/details/139187576  浏览:    关键词:基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 反向传播网络(BP,多层感知器MLP)

4.2 径向基函数网络(RBF)

4.3 卷积神经网络(CNN)

4.4 长短期记忆网络(LSTM)

5.完整程序


1.程序功能描述

       基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP神经网络,RBF神经网络,LSTM网络.对比预测结果和预测误差。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

..................................................................
for i = 1:floor(length(data1)/5);p1w(5*i-4:5*i,1) = [p1(i,1);p1(i,1);p1(i,1);p1(i,1);p1(i,1)];p2w(5*i-4:5*i,1) = [p2(i,1);p2(i,1);p2(i,1);p2(i,1);p2(i,1)];p3w(5*i-4:5*i,1) = [p3(i,1);p3(i,1);p3(i,1);p3(i,1);p3(i,1)];p4w(5*i-4:5*i,1) = [p4(i,1);p4(i,1);p4(i,1);p4(i,1);p4(i,1)];
end
Pweek = [p1w,p2w,p3w,p4w];
data1 = [data1,Pweek];%前收盘价格
Price_old = data1(:,1);
%收盘价格
Price_now = data1(:,5);Len = 500;P   = [data1(:,1:4),data1(:,6:end)];
P   = P/max(max(abs(P)));
T   = Price_now/max(Price_now);%归一化indx= 1:length(P);
ind1= indx(1:Len);
ind2= indx(Len+1:end);Ptrain = P(ind1,:);
Ttrain = T(ind1);Ptest  = P(ind2,:);
Ttest  = T(ind2);%BP神经网络
%创建网络
net                   = newff(Ptrain',Ttrain',100); 
%设置训练次数
net.trainParam.epochs = 5000;
%设置收敛误差
net.trainParam.goal   = 1e-7;
net.trainParam.showWindow = false; 
%训练网络
[net,tr]              = train(net,Ptrain',Ttrain');Tpre= sim(net,P') figure;
plot(max(Price_now)*T,'r');
hold on
plot(max(Price_now)*Tpre,'b');%误差
error = 100*(abs((Tpre(1:Len)-T(1:Len)')./Tpre(1:Len)));
max(error)
%准确率
100-max(error)%误差
error = 100*(abs((Tpre(1+Len:end)-T(1+Len:end)')./Tpre(1+Len:end)));
max(error)
%准确率
100-max(error)save model_BP.mat net error Price_now T Tpre
04_009m

4.本算法原理

        在金融数据预测领域,深度学习技术,特别是卷积神经网络(CNN)、循环神经网络(RNN)的长短期记忆(LSTM)变体、以及传统的机器学习模型如反向传播网络(BP,通常指多层感知器MLP)和径向基函数网络(RBF),都展现出了强大的预测能力。这些模型各有特色,适用于不同类型的数据特征和预测任务。

4.1 反向传播网络(BP,多层感知器MLP)

       BP网络是一种典型的前馈神经网络,通过多层非线性变换学习复杂的输入输出映射关系。对于金融数据预测,它能够捕捉到输入特征之间的非线性关系。

4.2 径向基函数网络(RBF)

       RBF网络是一种局部逼近模型,常用于函数拟合和分类。在金融预测中,它通过一系列的径向基函数来逼近非线性关系。

4.3 卷积神经网络(CNN)

      CNN最初设计用于图像处理,但在序列数据和时间序列预测(如金融数据)中也展现出强大能力。它通过卷积层捕捉局部特征,池化层降低维度,全连接层进行分类或回归。

4.4 长短期记忆网络(LSTM)

       LSTM是一种特殊的RNN,专为长序列数据设计,解决了传统RNN梯度消失/爆炸问题,非常适合时间序列预测,如股票价格预测。

5.完整程序

VVV

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com