您的位置:首页 > 科技 > 能源 > 免费公益云主机_韩国原生ip站群服务器_青岛seo公司_武汉seo搜索引擎

免费公益云主机_韩国原生ip站群服务器_青岛seo公司_武汉seo搜索引擎

2025/1/15 23:04:09 来源:https://blog.csdn.net/gs1we1/article/details/142920576  浏览:    关键词:免费公益云主机_韩国原生ip站群服务器_青岛seo公司_武汉seo搜索引擎
免费公益云主机_韩国原生ip站群服务器_青岛seo公司_武汉seo搜索引擎

9.矩阵的转置

矩阵的转置(Transpose)是矩阵操作中的一种基本运算。它通过交换矩阵的行和列来生成一个新的矩阵。具体来说,如果 A 是一个

m×n 的矩阵,那么它的转置矩阵 A^T 是一个 n×m 的矩阵,其中 A^T 的第 i 行第 j 列的元素等于 A 的第 j 行第i 列的元素。

定义

设 A 是一个 m×n 的矩阵,其元素为 aij,那么 A 的转置矩阵 A^T 是一个 n×m 的矩阵,其元素为 aji。

例子

假设有一个矩阵 A:
A = ( 1 2 3 4 5 6 ) A=\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6\end{pmatrix} A=(142536)
这个矩阵是一个 2×3 的矩阵。它的转置矩阵 A^T 是一个 3×2 的矩阵,计算如下:
A T = ( 1 4 2 5 3 6 ) A^{T}=\begin{pmatrix} 1 & 4 \\ 2 & 5\\3 & 6 \end{pmatrix} AT= 123456
性质

矩阵转置具有以下性质:

  • (AT)T = A:一个矩阵的转置的转置等于原矩阵。
  • (A + B)^T = A^T + B^T:两个矩阵和的转置等于它们各自转置的和。
  • (kA)^T = kA^T:一个矩阵乘以一个标量的转置等于该矩阵的转置乘以该标量。
  • (AB)^T = B^T A^T:两个矩阵乘积的转置等于它们各自转置的乘积,但顺序相反

特殊矩阵

  • 对称矩阵:如果一个矩阵 A 满足 A^T=A,那么 A 是对称矩阵。对称矩阵的元素关于主对角线对称。

    如:
    A = ( 1 1 3 1 1 4 3 4 1 ) A=\begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 4 \\ 3 & 4 & 1\end{pmatrix} A= 113114341

  • 反对称矩阵:如果一个矩阵 A 满足 A^T=−A,那么 A 是反对称矩阵。反对称矩阵的主对角线元素必须为零,且关于主对角线对称的元素互为相反数。

    如:
    A = ( 0 1 3 − 1 0 4 − 3 − 4 0 ) A=\begin{pmatrix} 0 & 1 & 3 \\ -1 & 0 & 4 \\ -3 & -4 & 0\end{pmatrix} A= 013104340

    A T = ( 0 − 1 − 3 1 0 − 4 3 4 0 ) = − A A^{T}=\begin{pmatrix} 0 & -1 & -3 \\ 1 & 0 & -4 \\ 3 & 4 & 0\end{pmatrix}=-A AT= 013104340 =A

    反对称矩阵:
    a i j = − a j i a_{ij}=-a_{ji} aij=aji
    所以:
    a i i = − a i i = > 2 a i i = 0 = > a i i = 0 a_{ii}=-a_{ii}=>2a_{ii}=0=>a_{ii}=0 aii=aii=>2aii=0=>aii=0
    得出主对角线元素必须为零

对称矩阵和反对称矩阵都是方阵。

矩阵A和B为同阶对称矩阵,AB对称的充要条件为AB=BA

证明:

AB对称则
( A B ) T = A B (AB)^{T}=AB (AB)T=AB
同时
( A B ) T = B T A T (AB)^{T}=B^{T}A^{T} (AB)T=BTAT
由于A和B是对称矩阵,则
( A B ) T = B T A T = B A (AB)^{T}=B^{T}A^{T}=BA (AB)T=BTAT=BA
所以
A B = B A AB=BA AB=BA
思考:

A为反对称矩阵,则A^k为?

证明:
( A k ) T = ( A × A . . . × A ) T = A T × A T . . . × A T = ( − A ) × ( − A ) . . . × ( − A ) = ( − 1 ) k A k (A^{k})^{T}=(A\times A ...\times A)^{T}=A^{T}\times A^{T}...\times A^{T}=(-A)\times (-A)...\times (-A)=(-1)^{k}A^{k} (Ak)T=(A×A...×A)T=AT×AT...×AT=(A)×(A)...×(A)=(1)kAk
如果k为偶数,则
( A k ) T = A k (A^{k})^{T}=A^{k} (Ak)T=Ak
此时A^k为对称矩阵

如果k为奇数,则
( A k ) T = − A k (A^{k})^{T}=-A^{k} (Ak)T=Ak
此时A^k为反对称矩阵

10.方阵的行列式

要计算行列式的前提为矩阵A为方阵。

性质:A为n阶的方阵
∣ A T ∣ = ∣ A ∣ |A^{T}|=|A| AT=A

∣ k A ∣ = k n ∣ A ∣ |kA|=k^{n}|A| kA=knA

∣ − A ∣ = ( − 1 ) n ∣ A ∣ |-A|=(-1)^{n}|A| A=(1)nA

∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B

∣ A m ∣ = ∣ A ∣ m |A^{m}|=|A|^{m} Am=Am

∣ E ∣ = 1 |E|=1 E=1

例子

1.有矩阵A
A = ( 1 2 0 0 3 0 − 1 4 5 ) A=\begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ -1 & 4 & 5\end{pmatrix} A= 101234005
求|2A|和|A|A

解:
d e t ( A ) = ∣ 1 2 0 0 3 0 − 1 4 5 ∣ = 3 × ( − 1 ) 2 + 2 ∣ 1 0 − 1 5 ∣ = 15 det(A)=\begin{vmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ -1 & 4 & 5\end{vmatrix}=3\times (-1)^{2+2}\begin{vmatrix} 1 & 0\\-1 & 5 \end{vmatrix}=15 det(A)= 101234005 =3×(1)2+2 1105 =15

d e t ( 2 A ) = 2 3 d e t ( A ) = 120 det(2A)=2^{3}det(A)=120 det(2A)=23det(A)=120

d e t ( A ) A = 15 A = 15 ( 1 2 0 0 3 0 − 1 4 5 ) = ( 15 30 0 0 45 0 − 15 60 75 ) det(A)A=15A=15\begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ -1 & 4 & 5\end{pmatrix}=\begin{pmatrix} 15 & 30 & 0 \\ 0 & 45 & 0 \\ -15 & 60 & 75\end{pmatrix} det(A)A=15A=15 101234005 = 150153045600075

2.A为n阶方阵,|A|=3,求
∣ ∣ A ∣ A T ∣ = ? ||A|A^{T}|=? ∣∣AAT=?
解:
∣ ∣ A ∣ A T ∣ = ∣ A ∣ n ∣ A T ∣ = ∣ A ∣ n + 1 = 3 n + 1 ||A|A^{T}|=|A|^{n}|A^{T}|=|A|^{n+1}=3^{n+1} ∣∣AAT=AnAT=An+1=3n+1

11.伴随矩阵

设 A 是一个 n×n 的方阵,其元素为 aij。伴随矩阵 adj(A)或A* 是一个 n×n的矩阵,其第 i 行第 j 列的元素是 A 的余子式 Mji 的代数余子式 Cji,即:
( A ∗ ) i j = C j i = ( − 1 ) i + j M j i (A^{*})_{ij}=C^{ji}=(−1)^{i+j}M_{ji} (A)ij=Cji=(1)i+jMji
其中 Mji是 A 的第j 行第i 列元素的余子式,即去掉第 j 行和第 i 列后剩下的 (n−1)×(n−1) 矩阵的行列式。

简单理解:

1.先按行求出每个元素的代数余子式

2.将每行元素的代数余子式按列组成一个矩阵,该矩阵就是伴随矩阵。

例如:
A = ( 1 1 1 2 1 3 1 1 4 ) A=\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 4\end{pmatrix} A= 121111134
求A的伴随矩阵A*

解:

按行求出每个元素的代数余子式:
C 11 = ( − 1 ) 1 + 1 ∣ 1 3 1 4 ∣ = 1 , C 12 = ( − 1 ) 1 + 2 ∣ 2 3 1 4 ∣ = − 5 , C 13 = ( − 1 ) 1 + 3 ∣ 2 1 1 1 ∣ = 1 C 21 = − 3 , C 22 = 3 , C 23 = 0 C 31 = 2 , C 32 = − 1 , C 33 = − 1 C_{11}=(-1)^{1+1}\begin{vmatrix} 1 & 3 \\ 1 & 4 \end{vmatrix}=1,C_{12}=(-1)^{1+2}\begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix}=-5,C_{13}=(-1)^{1+3}\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix}=1\\ C_{21}=-3,C_{22}=3,C_{23}=0\\ C_{31}=2,C_{32}=-1,C_{33}=-1 C11=(1)1+1 1134 =1,C12=(1)1+2 2134 =5,C13=(1)1+3 2111 =1C21=3,C22=3,C23=0C31=2,C32=1,C33=1
然后将每行元素的代数余子式按列组成矩阵:
C = ( 1 − 3 2 − 5 3 − 1 1 0 − 1 ) C=\begin{pmatrix} 1 & -3 & 2 \\ -5 & 3 & -1 \\ 1 & 0 & -1\end{pmatrix} C= 151330211
性质:
A A ∗ = A ∗ A = ∣ A ∣ E AA^{*}=A^{*}A=|A|E AA=AA=AE
证明:
( a 11 C 11 + a 12 C 12 + . . . + a 1 n C 1 n 0 . . . 0 0 a 21 C 21 + a 22 C 22 + . . . + a 2 n C 2 n . . . 0 ⋮ 0 0 . . . a n 1 C n 1 + a n 2 C n 2 + . . . + a n n C n n ) = ( ∣ A ∣ 0 . . . 0 0 ∣ A ∣ . . . 0 ⋮ 0 0 . . . ∣ A ∣ ) = ∣ A ∣ E \begin{pmatrix} a_{11}C_{11}+a_{12}C_{12}+...+a_{1n}C_{1n} & 0 & ... & 0 \\ 0 & a_{21}C_{21}+a_{22}C_{22}+...+a_{2n}C_{2n} & ... & 0 \\& \vdots \\ 0 & 0 & ... & a_{n1}C_{n1}+a_{n2}C_{n2}+...+a_{nn}C_{nn}\end{pmatrix}\\=\begin{pmatrix}|A| & 0 & ... & 0 \\ 0 & |A| & ... & 0 \\& \vdots \\ 0 & 0 & ... & |A| \end{pmatrix}=|A|E a11C11+a12C12+...+a1nC1n000a21C21+a22C22+...+a2nC2n0.........00an1Cn1+an2Cn2+...+annCnn = A000A0.........00A =AE
性质2:
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^{*}|=|A|^{n-1} A=An1
证明:
∣ A A ∗ ∣ = ∣ A ∣ ∣ A ∗ ∣ = ∣ ∣ A ∣ E ∣ = ∣ A ∣ n ∣ E ∣ = ∣ A ∣ n |AA^{*}|=|A||A^{*}|=||A|E|=|A|^{n}|E|=|A|^{n} AA=A∣∣A=∣∣AE=AnE=An
所以
∣ A ∣ ∣ A ∗ ∣ = ∣ A ∣ n = > ∣ A ∣ ( ∣ A ∣ n − 1 − ∣ A ∗ ∣ ) = 0 |A||A^{*}|=|A|^{n}=>|A|(|A|^{n-1}-|A^{*}|)=0 A∣∣A=An=>A(An1A)=0
得出
∣ A ∣ = 0 或 ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A|=0 或 |A^{*}|=|A|^{n-1} A=0A=An1
如果|A|=0,则A中两行元素相等或成比例,或一行元素为0,则其代数余子式必有一行元素为0,所以
∣ A ∗ ∣ = 0 = 0 n − 1 = ∣ A ∣ n − 1 |A^{*}|=0=0^{n-1}=|A|^{n-1} A=0=0n1=An1
所以等式成立。

12.逆矩阵

对于一个 n×n 的方阵 A,如果存在另一个 n×n的方阵 B,使得 AB=BA=E,其中 E 是 n×n 的单位矩阵,那么 B 称为 A 的逆矩阵,记作
A − 1 A^{−1} A1
逆矩阵的存在条件

一个矩阵 A 有逆矩阵的充分必要条件是 A 是可逆的,即 det⁡(A)≠0。如果 det⁡(A)=0,则 A 是奇异矩阵,没有逆矩阵。

思考:如果A可逆,则可逆矩阵是唯一的

证明:

假设可逆矩阵不是唯一的,存在两个可逆矩阵B1和B2,则由可逆矩阵定义可知:
A B 1 = B 1 A = E A B 2 = B 2 A = E AB_{1}=B_{1}A=E\\ AB_{2}=B_{2}A=E AB1=B1A=EAB2=B2A=E
则:
B 1 = B 1 E = B 1 ( A B 2 ) = ( B 1 A ) B 2 = E B 2 = B 2 B_{1}=B_{1}E=B_{1}(AB_{2})=(B_{1}A)B_{2}=EB_{2}=B_{2} B1=B1E=B1(AB2)=(B1A)B2=EB2=B2
所以可逆矩阵唯一。

性质:

1.n阶方阵A可逆的充要条件为
∣ A ∣ ≠ 0 |A|\neq 0 A=0
且当A可逆时,
A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\dfrac{1}{|A|}A^{*} A1=A1A
证明:

充分性:

因为
∣ A ∣ ≠ 0 |A|\neq 0 A=0

A A ∗ = A ∗ A = ∣ A ∣ E = > A ( 1 ∣ A ∣ A ∗ ) = ( 1 ∣ A ∣ A ∗ ) A = E AA^{*}=A^{*}A=|A|E=>A(\dfrac{1}{|A|}A^{*})=(\dfrac{1}{|A|}A^{*})A=E AA=AA=AE=>A(A1A)=(A1A)A=E
所以A可逆,并且
A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\dfrac{1}{|A|}A^{*} A1=A1A
必要性:

因为A可逆,则
A B = B A = E = > ∣ A B ∣ = ∣ A ∣ ∣ B ∣ = ∣ E ∣ = 1 AB=BA=E=>|AB|=|A||B|=|E|=1 AB=BA=E=>AB=A∣∣B=E=1
所以
∣ A ∣ ≠ 0 |A|\neq 0 A=0
例子:

有矩阵A:
A = ( 1 0 1 2 1 0 − 3 2 − 5 ) A=\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5\end{pmatrix} A= 123012105
问矩阵A是否可逆,如果可逆,求可逆矩阵

解:
∣ A ∣ = ∣ 1 0 1 2 1 0 − 3 2 − 5 ∣ = − 5 + 4 + 3 = 2 ≠ 0 |A|=\begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5\end{vmatrix}=-5+4+3=2\neq 0 A= 123012105 =5+4+3=2=0
所以A可逆
A − 1 = 1 ∣ A ∣ A ∗ = 1 2 ( − 5 2 − 1 10 − 2 2 7 − 2 1 ) A^{-1}=\dfrac{1}{|A|}A^{*}=\dfrac{1}{2}\begin{pmatrix} -5 & 2 & -1 \\ 10 & -2 & 2 \\ 7 & -2 & 1\end{pmatrix} A1=A1A=21 5107222121

2.设A、B 和 C 是 n×n 的可逆矩阵,那么它们的乘积 ABC的逆矩阵为:
( A B C ) − 1 = C − 1 B − 1 A − 1 (ABC)^{−1}=C^{−1}B^{−1}A^{−1} (ABC)1=C1B1A1

13.初等变换

初等变换一般可以分为两种类型:行变换、列变换。

初等行变换:

  • 交换两行:将矩阵的第 i 行和第 j 行交换位置

    如:矩阵第二行和第三行交换
    ( 1 2 3 4 5 6 7 8 9 ) − > ( 1 2 3 7 8 9 4 5 6 ) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}->\begin{pmatrix} 1 & 2 & 3\\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{pmatrix} 147258369 > 174285396

  • 某一行乘以非零常数:将矩阵的第i 行乘以一个非零常数 k

    如:第二行乘以非零整数k
    ( 1 2 3 4 5 6 7 8 9 ) − > ( 1 2 3 4 k 5 k 6 k 7 8 9 ) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}->\begin{pmatrix} 1 & 2 & 3 \\ 4k & 5k & 6k \\ 7 & 8 & 9\end{pmatrix} 147258369 > 14k725k836k9

  • 某一行加上另一行的倍数:将矩阵的第 i行加上第 j 行的 k 倍

    如:矩阵第一行乘以-4加到第二行
    ( 1 2 3 4 5 6 7 8 9 ) − > ( 1 2 3 0 − 3 − 6 7 8 9 ) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}->\begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9\end{pmatrix} 147258369 > 107238369

初等列变换

  • 交换两列:将矩阵的第 i 列和第 j 列交换位置
  • 某一列乘以非零常数:将矩阵的第 i 列乘以一个非零常数 k
  • 某一列加上另一列的倍数:将矩阵的第 i 列加上第 j 列的 k 倍

14.矩阵的标准形

常见的矩阵标准形包括行阶梯形矩阵、简化行阶梯形矩阵等。

14.1 行阶梯形矩阵

行阶梯形矩阵是一种特殊的矩阵形式,具有以下特征:

  • 非零行在零行之上:所有非零行都在零行之上。
  • 主元:每一行的第一个非零元素(主元)在上一行主元的右边。
  • 主元下方元素为零:每一行的主元下方元素都为零。

例如,以下矩阵是一个行阶梯形矩阵:
( 1 2 3 0 5 6 0 0 9 ) , ( 1 2 3 4 0 5 6 7 0 0 0 9 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 9\end{pmatrix},\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7\\ 0 & 0 &0 & 9\end{pmatrix} 100250369 , 100250360479
简单理解为:用折线表示,竖线只过一个数,横线可过多个数

下边的矩阵不是行阶梯形矩阵

14.2 简化行阶梯形矩阵

简化行阶梯形矩阵是行阶梯形矩阵的一种特殊形式,具有以下特征:

  • 非零行在零行之上:所有非零行都在零行之上。
  • 主元为 1:每一行的第一个非零元素(主元)为 1。
  • 主元下方元素为零:每一行的主元下方元素都为零。
  • 主元上方元素为零:每一行的主元上方元素都为零。

即:

1.是行阶梯形矩阵;2.非0行的首非0元是1;3.非0行的首非0元所在列的其它元素都是0

红色折线表示矩阵为行阶梯形矩阵;蓝色圆圈表示首非0元是1;黄色竖线表示首非0元所在列的其它元素都是0

例子:

有矩阵A
( 2 − 1 − 1 1 2 1 1 − 2 1 4 4 − 6 2 − 2 4 3 6 − 9 7 9 ) \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4\\ 4 & -6 & 2 & -2 & 4\\ 3 & 6 & -9 & 7 & 9\end{pmatrix} 21431166122911272449
求该矩阵的行阶梯形矩阵和行简化阶梯形矩阵

解:

1.第1行和第2行交换,得到
( 1 1 − 2 1 4 2 − 1 − 1 1 2 4 − 6 2 − 2 4 3 6 − 9 7 9 ) \begin{pmatrix} 1 & 1 & -2 & 1 & 4\\ 2 & -1 & -1 & 1 & 2 \\ 4 & -6 & 2 & -2 & 4\\ 3 & 6 & -9 & 7 & 9\end{pmatrix} 12431166212911274249
2.第1行乘以-2加到第2行,第1行乘以-4加到第3行,第1行乘以-3加到第4行,得到
( 1 1 − 2 1 4 0 − 3 3 − 1 − 6 0 − 10 10 − 6 − 12 0 3 − 3 4 − 3 ) \begin{pmatrix} 1 & 1 & -2 & 1 & 4\\ 0 & -3 & 3 & -1 & -6 \\ 0 & -10 & 10 & -6 & -12\\ 0 & 3 & -3 & 4 & -3\end{pmatrix} 10001310323103116446123
3.第2行乘以-10/3加到第3行,第2行加到第4行,得到
( 1 1 − 2 1 4 0 − 3 3 − 1 − 6 0 0 0 − 8 3 8 0 0 0 3 − 9 ) \begin{pmatrix} 1 & 1 & -2 & 1 & 4\\ 0 & -3 & 3 & -1 & -6 \\ 0 & 0 & 0 & -\dfrac{8}{3} & 8\\ 0 & 0 & 0 & 3 & -9\end{pmatrix} 100013002300113834689
4.第3三行乘以3/8,得到
( 1 1 − 2 1 4 0 − 3 3 − 1 − 6 0 0 0 − 1 3 0 0 0 3 − 9 ) \begin{pmatrix} 1 & 1 & -2 & 1 & 4\\ 0 & -3 & 3 & -1 & -6 \\ 0 & 0 & 0 & -1 & 3\\ 0 & 0 & 0 & 3 & -9\end{pmatrix} 10001300230011134639
5.第3行乘以3加到第4行,得到一个阶梯形矩阵
( 1 1 − 2 1 4 0 − 3 3 − 1 − 6 0 0 0 − 1 3 0 0 0 0 0 ) \begin{pmatrix} 1 & 1 & -2 & 1 & 4\\ 0 & -3 & 3 & -1 & -6 \\ 0 & 0 & 0 & -1 & 3\\ 0 & 0 & 0 & 0 & 0\end{pmatrix} 10001300230011104630
6.第三行乘以-1,得到
( 1 1 − 2 1 4 0 − 3 3 − 1 − 6 0 0 0 1 − 3 0 0 0 0 0 ) \begin{pmatrix} 1 & 1 & -2 & 1 & 4\\ 0 & -3 & 3 & -1 & -6 \\ 0 & 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 0 & 0\end{pmatrix} 10001300230011104630
7.第3行乘以-1加到第1行,第3行加到第2行
( 1 1 − 2 0 7 0 − 3 3 0 − 9 0 0 0 1 − 3 0 0 0 0 0 ) \begin{pmatrix} 1 & 1 & -2 & 0 & 7\\ 0 & -3 & 3 & 0 & -9 \\ 0 & 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 0 & 0\end{pmatrix} 10001300230000107930
8.第2行乘以1/3加到第1行,得到
( 1 0 − 1 0 4 0 − 3 3 0 − 9 0 0 0 1 − 3 0 0 0 0 0 ) \begin{pmatrix} 1 & 0 & -1 & 0 & 4\\ 0 & -3 & 3 & 0 & -9 \\ 0 & 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 0 & 0\end{pmatrix} 10000300130000104930
9.第2行乘以-1/3,得到一个行简化阶梯形矩阵
( 1 0 − 1 0 4 0 1 − 1 0 3 0 0 0 1 − 3 0 0 0 0 0 ) \begin{pmatrix} 1 & 0 & -1 & 0 & 4\\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3\\ 0 & 0 & 0 & 0 & 0\end{pmatrix} 10000100110000104330
思考:行阶梯形矩阵是唯一的吗?行简化阶梯形矩阵是唯一的吗?

行阶梯形矩阵不是唯一的,上边例子中第5、6、7步得到的矩阵都是行阶梯形矩阵

如果只做初等行变换,行简化阶梯形矩阵是唯一的,因为不能再简化了

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com