您的位置:首页 > 科技 > IT业 > 网站建设好不好_德州seo_微商怎样让客源主动加你_全国疫情高峰感染高峰进度

网站建设好不好_德州seo_微商怎样让客源主动加你_全国疫情高峰感染高峰进度

2024/12/22 15:37:03 来源:https://blog.csdn.net/weixin_56773716/article/details/143061753  浏览:    关键词:网站建设好不好_德州seo_微商怎样让客源主动加你_全国疫情高峰感染高峰进度
网站建设好不好_德州seo_微商怎样让客源主动加你_全国疫情高峰感染高峰进度

目录

1. MoveIt 适用范围

2. 力控制框架与 MoveIt 的区别

3. 力控方法

3.1 直接力控制 (Direct Force Control)

3.2 间接力控制 (Indirect Force Control)

3.2.1 柔顺控制 (Compliant Control)

3.2.2 阻抗控制 (Impedance Control)

3.2.3 导纳控制 (Admittance Control)

3.3 力/位混合控制 (Force/Position Hybrid Control)

4. 使用 ROS Control 框架:

5. 创建自定义控制器:

6. 集成力传感器与反馈回路:

7. 求解雅可比矩阵进行速度控制:


        在实际的机械臂力控任务中,一般不直接使用 MoveIt 来实现力控制。MoveIt 的主要功能集中在运动规划碰撞检测逆运动学求解路径优化等方面,而力控制通常涉及的是实时的力反馈力矩控制,这些功能不是 MoveIt 的主要强项。下面是更详细的解释:

1. MoveIt 适用范围

        MoveIt 适用于运动规划而非实时控制。MoveIt 的设计初衷是为机器人提供路径规划工具,帮助机器人规划出不与环境碰撞的可行路径,适用于自由运动或复杂环境中的路径计算。它的主要功能集中在:

  • 路径规划:基于环境信息和目标位置计算最优路径。
  • 碰撞检测:确保机械臂在规划路径时避免与环境中的物体发生碰撞。
  • 逆运动学:帮助找到末端执行器(如夹爪)在空间中的姿态对应的关节角度配置。

这些功能是离线或在线路径规划时非常重要的,但它们并不适用于实时的力/位置混合控制任务。

2. 力控制框架与 MoveIt 的区别

        机械臂的力控制(Force Control)要求能够根据传感器数据(例如力/扭矩传感器)的反馈,实时调整机械臂的运动或受力。这通常用于以下场景:

  • 接触控制:例如装配任务、打磨任务,机械臂需要在执行过程中与环境表面保持一定的力。
  • 柔顺控制:允许机械臂在特定方向上产生柔顺的运动,以避免对接触物体施加过大的力。

这种实时的力控制,需要高频率的控制回路,通常通过以下工具或方法实现:

  • 力/位置混合控制器:如 ros_controllers 中的 Cartesian Impedance Controller,或者基于力传感器的自定义控制器。
  • ROS 力矩控制包:例如 ros_control 提供的 force_torque_sensor_controller,用于结合力传感器的数据进行控制。
  • 力矩控制模式:很多机械臂控制器(如 KUKA、Universal Robots)提供了力矩控制模式,直接在硬件层面控制机械臂各关节的力矩输出。

3. 力控方法

3.1 直接力控制 (Direct Force Control)

        直接力控制旨在实时控制机器人末端执行器施加的力。通过使用力传感器实时监测施加的力,控制系统可以动态调整机器人的运动,以确保施加力与目标力相匹配。这种控制方式适用于需要精确施加力的应用,如自动化装配、打磨或焊接等。

3.2 间接力控制 (Indirect Force Control)

        间接力控制通过控制机器人的运动来间接实现对施加力的控制。这种方法通常依赖于机器人模型和动态响应,以调整关节或末端的运动来影响力的输出。间接力控制可以细分为几种主要方法:

3.2.1 柔顺控制 (Compliant Control)

        柔顺控制的目标是使机器人在与环境交互时具有一定的柔顺性。它允许机器人在一定范围内根据外部力进行适应,从而减少冲击或损伤。

        被动柔顺 (Passive Compliance)

被动柔顺通过机械设计(如弹簧、阻尼器等)实现,不需要控制系统的实时调整。机器人在受到外力时能够自然变形,以缓冲冲击或适应环境变化。

        主动柔顺 (Active Compliance)

        主动柔顺需要实时反馈和控制系统的参与。机器人根据力传感器的反馈动态调整运动,以确保施加的力在期望范围内,提供更高的适应能力。

3.2.2 阻抗控制 (Impedance Control)

        阻抗控制通过设置力与位移之间的动态关系来实现对力的控制。机器人能够根据外部力的变化调整其运动,表现出一定的“阻抗”,类似于弹簧的行为。

3.2.3 导纳控制 (Admittance Control)

        导纳控制与阻抗控制相对,主要关注在施加一定的力后,机器人如何反应以改变其运动状态。它允许机器人根据施加的力来调整其位移或速度,从而达到柔顺交互的效果。

3.3 力/位混合控制 (Force/Position Hybrid Control)

        力/位混合控制结合了位置控制和力控制的特性。在抛光或打磨过程中,机械臂需要精确控制末端执行器的位置以跟随工作表面,同时保持恒定的接触力。这种情况下,机器人通过力位控制可以实现目标,即在表面移动时保持适当的施加力,以确保均匀的表面处理效果。例如,打磨时,机械臂可以通过力传感器实时监测施加的力,并根据反馈调整移动速度,以保持恒定的打磨压力。

4. 使用 ROS Control 框架

ROS 提供了ros_control框架,该框架为机械臂的实时控制提供了接口。力控可以通过创建自定义控制器并使用此框架来实现:

  • Position Controller:控制机械臂的关节位置,适用于导纳控制。
  • Effort Controller:直接控制关节的力矩,适用于阻抗控制。
  • Velocity Controller:控制机械臂关节的速度,常用于结合导纳控制的实现。

5. 创建自定义控制器

在 ROS 中,通常需要根据具体的控制需求编写一个自定义控制器:

  • 使用 ROS Control 中的控制器框架,在控制器中订阅外部的传感器数据(例如,力传感器)。
  • 实现实时反馈逻辑:比如,当检测到力传感器的输出超出预设范围时,调整机械臂末端的速度或关节位置。

6. 集成力传感器与反馈回路

  • 力传感器的集成:机械臂末端通常安装力/力矩传感器,实时采集与外部环境的力反馈。
  • 数据处理:通过订阅力传感器的 ROS 话题,将采集到的力数据输入到自定义控制器中。
  • 反馈控制:根据力传感器数据,控制器实时调整机械臂的运动参数(位置、速度或力),以保持恒定的接触力。

7. 求解雅可比矩阵进行速度控制

在实现笛卡尔空间的末端速度控制时,通常需要求解雅可比矩阵,将末端的线速度和角速度转换为各关节的速度。此过程可以通过 ROS 中的 Orocos KDL 库实现:

  • 雅可比矩阵求解:Orocos KDL 库提供了直接的雅可比矩阵求解函数,用于笛卡尔空间与关节空间之间的转换。
  • 速度控制:通过求解雅可比矩阵,实时调整机械臂末端的速度,实现对外力的响应。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com