往期精彩内容:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理
Pytorch-LSTM轴承故障一维信号分类(一)-CSDN博客
Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客
Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客
三十多个开源数据集 | 故障诊断再也不用担心数据集了!
Python轴承故障诊断 (一)短时傅里叶变换STFT-CSDN博客
Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客
Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客
Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客
Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客
Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客
Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客
Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客
基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客
基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客
前言
本文基于凯斯西储大学(CWRU)轴承数据,进行变分模态分解VMD的介绍与数据预处理,最后通过Python实现VMD-CNN-BiLSTM对故障数据的分类。
凯斯西储大学轴承数据的详细介绍可以参考下文:
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_凯斯西储大学轴承数据集-CSDN博客
1 变分模态分解VMD的Python示例
第一步,Python 中 VMD包的下载安装:
# 下载
pip install vmdpy# 导入
from vmdpy import VMD
第二步,导入相关包进行分解
import numpy as np
import matplotlib.pyplot as plt
from vmdpy import VMD# -----测试信号及其参数--start-------------
t = np.linspace(0, 1, 1000)
signal = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 20 * t)
T = len(signal)
fs = 1/T
t = np.arange(1,T+1)/T# alpha 惩罚系数;带宽限制经验取值为抽样点长度1.5-2.0倍.
# 惩罚系数越小,各IMF分量的带宽越大,过大的带宽会使得某些分量包含其他分量言号;
alpha = 2000#噪声容限,一般取 0, 即允许重构后的信号与原始信号有差别。
tau = 0
#模态数量 分解模态(IMF)个数
K = 5#DC 合成信号若无常量,取值为 0;若含常量,则其取值为 1
# DC 若为0则让第一个IMF为直流分量/趋势向量
DC = 0
#初始化ω值,当初始化为 1 时,均匀分布产生的随机数
# init 指每个IMF的中心频率进行初始化。当初始化为1时,进行均匀初始化。
init = 1
#控制误差大小常量,决定精度与迭代次数
tol = 1e-7
# -----测试信号及其参数--end----------# Apply VMD
# 输出U是各个IMF分量,u_hat是各IMF的频谱,omega为各IMF的中心频率
u, u_hat, omega= VMD(signal, alpha, tau, K, DC, init, tol)
#得到中心频率的数值
print(omega[-1])
# Plot the original signal and decomposed modes
plt.figure(figsize=(15,10))
plt.subplot(K+1, 1, 1)
plt.plot(t, signal, 'r')
plt.title("原始信号")
for num in range(K):plt.subplot(K+1, 1, num+2)plt.plot(t, u[num,:])plt.title("IMF "+str(num+1))plt.show()
2 轴承故障数据的预处理
2.1 导入数据
参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:
train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据
上图是数据的读取形式以及预处理思路
2.2 故障VMD分解可视化
第一步, 模态选取
根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。
第二步,故障VMD分解可视化
2.3 故障数据的VMD分解预处理
3 基于VMD-CNN-BiLSTM的轴承故障识别模型
下面基于VMD分解后的轴承故障数据,先通过CNN进行卷积池化操作提取信号的特征,增加维度,缩短序列长度,然后再送入BiLSTM层提取时序特征,实现CNN-BiLSTM信号的分类方法进行讲解:
3.1 定义VMD-CNN-BiLSTM分类网络模型
3.2 设置参数,训练模型
50个epoch,准确率将近97%,用VMD-CNN-BiLSTM网络分类效果显著,CNN-BiLSTM模型能够充分提取轴承故障信号的空间和时序特征,收敛速度快,性能优越,继续调参可以进一步提高分类准确率。
注意调整参数:
-
可以适当增加CNN层数和隐藏层的维度,微调学习率;
-
调整BiLSTM层数和维度数,增加更多的 epoch (注意防止过拟合)
-
可以改变一维信号堆叠的形状(设置合适的长度和维度)
3.3 模型评估
准确率、精确率、召回率、F1 Score
故障十分类混淆矩阵: