您的位置:首页 > 新闻 > 资讯 > 线性代数|机器学习-P12Ax=b条件下x最小值问题

线性代数|机器学习-P12Ax=b条件下x最小值问题

2025/1/11 13:00:30 来源:https://blog.csdn.net/scar2016/article/details/139579098  浏览:    关键词:线性代数|机器学习-P12Ax=b条件下x最小值问题

文章目录

  • 1. Ax=b下的最值问题-图形转换
  • 2. Gram-Schmidt 标准形
  • 3. 迭代法-Krylov子空间法

1. Ax=b下的最值问题-图形转换

假设我们有一个直线方程如下:
3 x 1 + 4 x 2 = 1 \begin{equation} 3x_1+4x_2=1 \end{equation} 3x1+4x2=1
在二维平面上,各个范数如下:
min ⁡ ∣ ∣ x ∣ ∣ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ , min ⁡ ∣ ∣ x ∣ ∣ 2 = x 1 2 + x 2 2 , min ⁡ ∣ ∣ x ∣ ∣ ∞ = max ⁡ ∣ x i ∣ \begin{equation} \min||x||_1=|x_1|+|x_2|,\min||x||_2=x_1^2+x_2^2,\min||x||_{\infty}=\max|x_i| \end{equation} min∣∣x1=x1+x2,min∣∣x2=x12+x22,min∣∣x=maxxi

  • L1范数是一个膨胀的钻石形状,L2范数是一个膨胀的圆形, L ∞ L_{\infty} L是一个膨胀的正方形
    在这里插入图片描述
  • 那么在Ax=b约束条件下的最小值问题可以转换为范数图像与约束条件 A x = b Ax=b Ax=b组成图像的第一个相交的点。
  • L1与直线相交A点,L2与直线相交B点,L3与直线相交C点,这样就可以通过几何图形的方式求得在约束条件下的最小值问题了,用函数图像代替约束条件方程Ax=b,用范数表示不同情况下的最值问题。真神奇!!!
    在这里插入图片描述

2. Gram-Schmidt 标准形

通过Gram-Schmidt 可以将矩阵A分解如下 A = Q R A=QR A=QR
我们有一个矩阵A的列向量组,发现矩阵A的列向量之间不是相互正交的,如果列向量之间不是相互正交独立,那么就无法用最简单的形式去表达其他的向量,所以我们就用Gram-Schmidt,将原来的 a 1 , a 2 a_1,a_2 a1,a2转换成 q 1 , q 2 , q 1 ⊥ q 2 , ∣ q 1 ∣ = ∣ q 2 ∣ = 1 q_1,q_2,q_1\perp q_2,|q_1|=|q_2|=1 q1,q2,q1q2,q1=q2=1 ,Gram-Schmidt用的方法很简单,

  • 先选择一个向量 a 1 a_1 a1,直接以这个向量作为第一个方向,正交化得到 q 1 q_1 q1
    q 1 = a 1 ∣ a 1 ∣ , ∣ q 1 ∣ = 1 \begin{equation} q_1=\frac{a_1}{|a_1|},|q_1|=1 \end{equation} q1=a1a1,q1=1
  • 现在 a 2 a_2 a2 q 1 q_1 q1不正交,我们就要将 a 2 a_2 a2投影到 q 1 q_1 q1上得到投影向量 p 2 p_2 p2,再用 a 2 − p 2 = A 2 a_2-p_2=A_2 a2p2=A2
    q 1 T a 2 = ∣ q 1 ∣ ∣ a 2 ∣ cos ⁡ θ = ∣ a 2 ∣ cos ⁡ θ , a 2 在 q 1 上的投影长度出来了 \begin{equation} q_1^Ta_2=|q_1||a_2|\cos{\theta}=|a_2|\cos{\theta},a_2在q_1上的投影长度出来了 \end{equation} q1Ta2=q1∣∣a2cosθ=a2cosθ,a2q1上的投影长度出来了
  • 投影长度乘以单位向量得到 p 2 p_2 p2,向量相减得到 A 2 A_2 A2
    p 2 = q 1 T a 2 q 1 , A 2 = a 2 − p 2 → A 2 = a 2 − q 1 T a 2 q 1 → q 2 = A 2 ∣ A 2 ∣ \begin{equation} p_2=q_1^Ta_2q_1,A_2=a_2-p_2\rightarrow A_2=a_2-q_1^Ta_2q_1\rightarrow q_2=\frac{A_2}{|A_2|} \end{equation} p2=q1Ta2q1,A2=a2p2A2=a2q1Ta2q1q2=A2A2
  • 同理 q 3 q_3 q3就是将向量 a 3 a_3 a3减去 a 3 a_3 a3 q 1 , q 2 q_1,q_2 q1,q2上的投影向量 p 2 , p 3 p_2,p_3 p2,p3即可得到 A 3 A_3 A3
    p 3 = q 1 T a 3 q 1 , p 2 = q 2 T a 3 q 2 → A 3 = a 3 − q 1 T a 3 q 1 − p 2 = q 2 T a 3 q 2 \begin{equation} p_3=q_1^Ta_3q_1,p_2=q_2^Ta_3q_2\rightarrow A_3=a_3-q_1^Ta_3q_1-p_2=q_2^Ta_3q_2 \end{equation} p3=q1Ta3q1,p2=q2Ta3q2A3=a3q1Ta3q1p2=q2Ta3q2
    所以Gram-Schmidt 的本质是从A中的列向量中不断抽取向量 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,,an通过不断迭代的形式,得到一组标准正交向量组 q 1 , q 2 , ⋯ , q n q_1,q_2,\cdots,q_n q1,q2,,qn,
  • 但我们发现一个问题,我们怎么选择向量 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,,an呢?如果 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,,an太相关了怎么办,这样正交化的效果不是很好,如下所示:我们希望选择好的向量 a 12 , a 22 a_{12},a_{22} a12,a22而不是相关性太大的 a 11 , a 21 a_{11},a_{21} a11,a21
    在这里插入图片描述
  • 那怎么做了,我们只需要在每次选择新的向量的时候,选择投影p较小的向量作为正交向量,比如我们先找到 a 1 → q 1 a_1\rightarrow q_1 a1q1再找 q 2 q_2 q2 过程中我们需要筛选,将 a 2 , a 3 , ⋯ , a n a_2,a_3,\cdots,a_n a2,a3,,an都投影到 q 1 q_1 q1上,看看哪个投影长度最小,我们就选择这个作为 A 2 → q 2 A_2\rightarrow q_2 A2q2
  • p 21 , p 31 , ⋯ , p n 1 p_{21},p_{31},\cdots,p_{n1} p21,p31,,pn1中选择最小的一个作为 A 2 → q 2 A_2\rightarrow q_2 A2q2
    p 21 = q 1 T a 2 q 1 , p 31 = q 1 T a 3 q 1 , ⋯ p n 1 = q 1 T a n q 1 \begin{equation} p_{21}=q_1^Ta_2q_1,p_{31}=q_1^Ta_3q_1,\cdots p_{n1}=q_1^Ta_nq_1 \end{equation} p21=q1Ta2q1,p31=q1Ta3q1,pn1=q1Tanq1
  • 同理依次选择 q 3 , q 4 , ⋯ , q n q_3,q_4,\cdots,q_n q3,q4,,qn,这就是改进后的Gram-Schmidt

3. 迭代法-Krylov子空间法

直接引用大神的笔记,具体后续整理

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com