您的位置:首页 > 新闻 > 资讯 > 线性代数 第七讲 二次型_标准型_规范型_坐标变换_合同_正定二次型详细讲解_重难点题型总结

线性代数 第七讲 二次型_标准型_规范型_坐标变换_合同_正定二次型详细讲解_重难点题型总结

2025/1/9 0:44:38 来源:https://blog.csdn.net/weixin_62613321/article/details/142031689  浏览:    关键词:线性代数 第七讲 二次型_标准型_规范型_坐标变换_合同_正定二次型详细讲解_重难点题型总结

文章目录

  • 1.二次型
    • 1.1 二次型、标准型、规范型、正负惯性指数、二次型的秩
    • 1.2 坐标变换
    • 1.3 合同
    • 1.4 正交变换化为标准型
  • 2.二次型的主要定理
  • 3.正定二次型与正定矩阵
  • 4.重难点题型总结
    • 4.1 配方法将二次型化为标准型
    • 4.2 正交变换法将二次型化为标准型
    • 4.3 规范型确定取值范围问题
    • 4.4 已知两个二次型f和g,求正否能通过正交变换使得f转换为g
    • 4.5 由已知条件,反求二次型f(x~1~,x~2~....)的表达式(反求矩阵问题)

1.二次型

1.1 二次型、标准型、规范型、正负惯性指数、二次型的秩

二次型:

二次型中的矩阵A是实对称矩阵,实对称矩阵天然的可相似对角化。

在这里插入图片描述

解释说明:
二次型其实是一个由二次的项组成的式子
它可以写成XTAX的形式,其中A矩阵是对称阵
其中A矩阵是怎么写出来的?
1.A的对角线元素是由xn的平方决定,a11是x12前的系数,a22是x22前的系数,以此类推
2. 对称位置a12,a21 这种由混合项x1x2的系数决定,以此类推

标准型:

在这里插入图片描述

解释说明:
标准型就是去掉了混合项,二次型矩阵A变成了对角矩阵

规范型:

规范型就是在标准型的基础上,平方项的次数是1或-1或0
规范型能确定什么?
不同的标准型能被化成相同的规范型的形式。
所以说,规范型能确定的东西有限,我们只能通过规范型得到正负系数,正负惯性指数

正惯性指数 负惯性指数:

在这里插入图片描述

解释说明:
正惯性指数就是标准型中平方项系数为正数的个数
负惯性指数就是标准型中平方项系数为负数的个数
正惯性指数 负惯性指数是对标准型而言的,只有处理成标准型才能看见正负惯性指数

二次型的秩:

二次型的秩就是二次型矩阵A的秩
r(f)=r(A)

1.2 坐标变换

坐标变换,其实我们可以理解为换元,在高等数学的学习中,我们经常利用换元法将复杂的式子通过换元来变成简单的式子,在二次型中也同样如此,
x=Cy的形式换元,重要的是C矩阵 |C|≠0

在这里插入图片描述

1.3 合同

如CTAC=B,C可逆,称矩阵A和B合同

合同的性质:

  1. A合同于A
  2. A合同于B,则B合同于A
  3. 合同具有传递性,A合同于B,B合同于C,A合同于C

二次型与正交变换与合同之间的联系:
在这里插入图片描述
补充:通过坐标变换,可以得到A合同于一个对角矩阵

1.4 正交变换化为标准型

核心:通过求二次型矩阵A的特征值,就可得出二次型的标准型。通过求二次型矩阵A的特征向量,得到坐标变换x=Qy,其中Q是由A的特征向量经过施密特正交化组成的。

在这里插入图片描述

二次型化标准型就转变成了求特征值求特征向量的问题。

2.二次型的主要定理

定理1:
见二次型与正交变换与合同之间的联系的结论

定理2:
任一个二次型XTAX都存在坐标变换x=cy化成标准型

3.正定二次型与正定矩阵

n元二次型f(x1,x2…)=xTAx,若对任意的x[x1,x2,…,xn]T≠0,均有xTAx>0,则称f为正定二次型,A为正定矩阵。

正定二次型的充要条件:
1.定义法 任意x, xTAx>0
2.f的正惯性指数p=n
3.A的特征值λi均>0
4.A的全部顺序主子式均>0

正定二次型的必要条件:
1.aii>0
2.|A|>0

在判断是否是正定矩阵的题目中,常用充要条件是2-4或必要条件1得出

补充一个小知识:反对称矩阵AT=-A

4.重难点题型总结

4.1 配方法将二次型化为标准型

配方法将含有平方项的二次型化为标准型:

一步一步来,先配x1,再配x2,这样就能防止|c|=0,使得坐标变换失败

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.4

配方法将不含有平方项的二次型化为标准型:
在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.5

4.2 正交变换法将二次型化为标准型

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.6-6.7

4.3 规范型确定取值范围问题

在这里插入图片描述

4.4 已知两个二次型f和g,求正否能通过正交变换使得f转换为g

思路:
相似的传递性 合同的传递性
f相似且合同于一个对角阵,g也相似且合同于一个对角阵,他俩相似且合同的对角阵是同一个对角阵,那么f与g相似且合同,所以必有一个正交变换能使得f可以变成g。
综上本质就是,f和g有相同的特征值
一些细节:x=Q1z 得到对角阵,y=Q

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.9

4.5 由已知条件,反求二次型f(x1,x2…)的表达式(反求矩阵问题)

思路如下:
求二次型表达式,也就是求二次型矩阵A,也就是方程组应用那节中的反求矩阵问题,反求矩阵问题两大核心利器,一是矩阵乘法,二是相似
在这里插入图片描述

在这里插入图片描述

题目来源:李永乐线代辅导讲义 例 6.13

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com