二分查找
class Solution
{
public:int search(vector<int>& nums, int target) {int left = 0, right = nums.size() - 1;while(left <= right) // 等于也要进入循环{int mid = left + (right - left) / 2; // 防止溢出if(nums[mid] < target) left = mid + 1;else if(nums[mid] > target) right = mid - 1;else return mid;}return -1;}
};
总结:
- 能使用二分查找的前提是具有二段性,无论是否有序,重要的是有二段性
- 判断循环的条件要注意,等于的时候也要进入循环,因为都是未知的,当left和right相等时,具体到一个数也要进循环判断
- 在算mid时要防止溢出
- 本题也是朴素二分查找的模板
while(left <= right) // 等于也要进入循环
{int mid = left + (right - left) / 2; // 防止溢出if(...) left = mid + 1;else if(...) right = mid - 1;else return ...;
}
- …根据二段性来填写
在排序数组中查找元素的第一个和最后一个位置
class Solution
{
public:vector<int> searchRange(vector<int>& nums, int target) {if(nums.size() == 0) return {-1, -1};int left = 0, right = nums.size() - 1;int begin = 0; // 用于记录左端点// 找左端点while(left < right){int mid = left + (right - left) / 2;if(nums[mid] < target) left = mid + 1;else right = mid;}if(nums[left] != target) return {-1, -1};else begin = left;// 找右端点left = 0, right = nums.size() - 1; // 重置指针while(left < right){int mid = left + (right - left + 1) / 2;if(nums[mid] <= target) left = mid;else right = mid - 1;}return {begin, right};}
};
总结:
- 模板
// 找左端点
while(left < right)
{int mid = left + (right - left) / 2;if(...) left = mid + 1;else right = mid;
}// 找右端点
left = 0, right = nums.size() - 1; // 重置指针
while(left < right)
{int mid = left + (right - left + 1) / 2;if(...) left = mid;else right = mid - 1;
}
助记:下面-1,上面就加一,判断情况就题论题
x的平方数
class Solution
{
public:int mySqrt(int x) {if(x == 0) return 0;int left = 1, rigth = x;while(left < rigth){long long mid = left + (rigth - left + 1) / 2; // 防止溢出if(mid * mid <= x) left = mid;else rigth = mid - 1;}return left;}
};
总结:
- 提前处理边界情况
- 本题实际上是找左端点,所以想左端点重要,写出判断条件
搜索插入位置
class Solution
{
public:int searchInsert(vector<int>& nums, int target) {// 实际上是找右端点int left = 0, right = nums.size() - 1;while(left < right){int mid = left + (right - left) / 2;if(nums[mid] < target) left = mid + 1;else right = mid;}if(nums[left] < target) return left + 1;return left;}
};
总结:
本题实际是找左端点,需要注意的是要单独处理一下最后的特殊情况
山脉数组的峰顶索引
class Solution
{
public:int peakIndexInMountainArray(vector<int>& arr) {int left = 0, right = arr.size() - 1;while(left < right){int mid = left + (right - left + 1) / 2;if(arr[mid] > arr[mid - 1]) left = mid;else right = mid - 1;}return left;}
};
总结:
- 数组具有二段性,想到二分查找
- 直接用模板,下面减一上面加一
寻找峰值
class Solution
{
public:int findPeakElement(vector<int>& nums) {int left = 0, right = nums.size() - 1;while(left < right){int mid = left + (right - left) / 2;if(nums[mid] > nums[mid + 1]) right = mid; //如果中间值大于下一个值,就去左边一段查找,体会二段性else left = mid + 1; // 否则去右边一段查找}return left;}
};
总结:
3. 上减下加,模板很固定,没有出现则不用加
4. 存在二段性就能用二分查找,不用管数组是否有序
寻找旋转排序数组的最小值
class Solution
{
public:int findMin(vector<int>& nums) {int left = 0, right = nums.size() - 1;while(left < right){int mid = left + (right - left) / 2;if(nums[mid] < nums[nums.size() - 1]) right = mid;else left = mid + 1;}return nums[left];}
};
总结:
5. 本题主要是找见二段行,一定要画图,理解两段,找见参照点
点名
class Solution
{
public:int takeAttendance(vector<int>& records) {int left = 0, right = records.size() - 1;while(left < right){int mid = left + (right - left) / 2;if(records[mid] == mid) left = mid + 1;else right = mid;}return records[left] == left ? left + 1 : left; // 三目表达式的运用很方便}
};
总结:
- 本题解法很多,如使用哈希表,遍历,位运算(异或),数组求和,二分法
- 二分法关键是找二段性,本题的二段性在值和下标是否一一对应,注意要处理边界情况
完