您的位置:首页 > 新闻 > 会展 > vi设计 站酷_b2b平台的优势_搜索引擎营销的内容_天津百度推广

vi设计 站酷_b2b平台的优势_搜索引擎营销的内容_天津百度推广

2025/2/25 3:01:21 来源:https://blog.csdn.net/egoist2023/article/details/145653359  浏览:    关键词:vi设计 站酷_b2b平台的优势_搜索引擎营销的内容_天津百度推广
vi设计 站酷_b2b平台的优势_搜索引擎营销的内容_天津百度推广

🌟 各位看官号,我是egoist2023!

🌍 种一棵树最好是十年前,其次是现在!

🚀 今天来学习如何通过蓝耘智算使用DeepSeek R1模型

👍 如果觉得这篇文章有帮助,欢迎您一键三连,分享给更多人哦

目录

一、前言

DeepSeek平台的当前弊端

二、DeepSeek-R1 的核心特点

三、蓝耘智算是什么?

四、蓝耘智算搭建DeepSeek-R1模型


一、前言

DeepSeek因其优秀的推演能力、强大的模型训练以及更少的资金培养,是近期爆火的开源大模型。然而,随着用户需求的增长,DeepSeek在大数据和高频访问的场景下经常面临服务器不稳定的问题。

DeepSeek平台的当前弊端

  • 服务可用性波动:用户量激增或高并发请求时,可能出现响应延迟、排队等待甚至服务中断(如API返回超时错误)。
  • 响应时间不稳定:在处理长文本生成或复杂推理时,延迟可能随机波动。
  • 安全防护引发的副作用:为防止恶意攻击,高频率请求可能被误判为异常流量,触发限流或封禁。

在使用DeepSeek平台的时候,经常会面临如下问题:

在deepseek官网上使用deepseek R1的深度思考功能,在处理较长文本的时候思考的时间过长,不能给用户提供更高效、智能的服务体验。

甚至在面临多用户的高频访问时,会出现“服务器繁忙,请稍后再试”的字样,对用户造成了不佳体验。

因此,本文通过使用蓝耘智算搭建DeepSeek R1模型 以充分发挥DeepSeek的性能和稳定性。


二、DeepSeek-R1 的核心特点

  • 高效推理:推理速度较同类模型提升 30%-50%,支持 FP16/INT8 混合精度部署。
  • 多模态扩展:可扩展至图文生成、视觉问答等任务。
  • 中文优化:针对中文语料深度训练,在语义理解和生成任务中表现优异。
  • 领域自适应:提供“插件式”扩展能力,可接入外部知识库提升回答准确性。

DeepSeek-R1与其他大模型的对比

大模型DeepSeek-R1GPT-4Claude 3LLaMA-2
推理效率动态稀疏注意力,速度最快依赖高算力,延迟较高中等优化需额外压缩优化
多语言支持 中英文优化,亚洲语言突出全球语言覆盖广侧重英语英语为主
垂直领域适配行业插件+知识库接口,开箱即用依赖大量微调 部分行业预训练 需完全自定义
部署成本量化后仅需 24GB GPU 显存需 80GB+ A100 集群中等资源需求 基础版资源消耗高

三、蓝耘智算是什么?

蓝耘智算是一家专注于高性能计算(HPC)云计算人工智能算力服务的科技公司。蓝耘智算平台搭载了智能调度系统,能够根据任务需求动态分配算力资源,确保高效利用计算资源,并大幅缩短任务执行时间。

通过蓝耘智算平台搭建DeepSeek-R1模型的优势:

  • 算力支持:为DeepSeek的AI模型训练提供高性能计算资源。

  • 技术融合:结合蓝耘的算力优化技术与DeepSeek的AI算法,提升模型效率。

  • 行业解决方案:共同开发面向金融、医疗、教育等行业的AI应用。

四、蓝耘智算搭建DeepSeek-R1模型

通过此链接  https://cloud.lanyun.net//#/registerPage?promoterCode=0131  进行注册。

注册成功后,可以在此平台看到应用市场,进行点击

进入应用市场后,就能看到DeepSeek-R1模型的部署,且蓝耘平台提供了多种深度学习模型,涉及计算机视觉、音频、自然语言处理等多种领域。

这里以deepseek-r1_1.5b_7b_8b模型为例,点击部署。

【应用介绍】DeepSeek在R1模型的基础上,使用Qwen和Llama蒸馏了几个不同大小的模型,适配目前市面上对模型尺寸的最主流的几种需求。Qwen和Llama系列模型架构相对简洁,并提供了高效的权重参数管理机制,适合在大模型上执行高效的推理能力蒸馏。蒸馏的过程中不需要对模型架构进行复杂修改 ,减少了开发成本。【默认账号:lanyunuser@lanyun.net 密码:lanyunuser】

这里直接选择4090进行安装(不是4090的电脑也无碍)。因为主要依赖于平台的算力资源池虚拟化技术远程计算服务。用户无需本地拥有4090 GPU,即可通过平台高效利用高性能硬件资源。这种模式降低了用户硬件成本,同时提升了计算效率。

创建好后点击右上角的快速启动应用就能运行我们DeepSeek-R1模型

接下来进行登录【默认账号:lanyunuser@lanyun.net 密码:lanyunuser】

登录后就会出现这个页面,即DeepSeek-R1模型的可视化界面。

附上平台注册链接:
https://cloud.lanyun.net//#/registerPage?promoterCode=0131


版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com