您的位置:首页 > 新闻 > 资讯 > 株洲市疫情最新规定_平面设计接单价格_南京网络营销服务_佛山网站建设技术托管

株洲市疫情最新规定_平面设计接单价格_南京网络营销服务_佛山网站建设技术托管

2025/2/25 2:18:48 来源:https://blog.csdn.net/xyz3120/article/details/145036258  浏览:    关键词:株洲市疫情最新规定_平面设计接单价格_南京网络营销服务_佛山网站建设技术托管
株洲市疫情最新规定_平面设计接单价格_南京网络营销服务_佛山网站建设技术托管

在Transformer模型中,各个矩阵的维度变化是一个关键的过程,涉及到输入、编码器、解码器和输出等多个阶段。以下是详细的维度变化过程:

输入阶段

  • 输入序列:假设输入序列的长度为seq_len,每个单词或标记通过词嵌入(word embedding)转换为一个固定维度的向量,维度为d_model。因此,输入矩阵的维度为(seq_len, d_model)
  • 位置编码:位置编码(Positional Encoding)通常与词嵌入向量相加,以提供序列中每个单词的位置信息。位置编码的维度与词嵌入相同,即(seq_len, d_model)

编码器(Encoder)阶段

  • 多头注意力机制(Multi-Head Attention)

    • 查询(Q)、键(K)、值(V)矩阵:输入矩阵与权重矩阵相乘得到Q、K、V矩阵。假设每个头的维度为d_k(通常d_k = d_model / num_heads),则Q、K、V的维度为(seq_len, d_k)
    • 注意力计算:Q与K的转置相乘,得到一个注意力得分矩阵,维度为(seq_len, seq_len)。经过softmax处理后,再与V相乘,得到输出矩阵,维度为(seq_len, d_k)
    • 多头拼接:将所有头的输出拼接或平均,得到最终的输出矩阵,维度为(seq_len, d_model)
  • 前馈神经网络(Feed-Forward Network)

    • 输入矩阵经过两个线性变换和非线性激活函数,最终输出的维度保持为(seq_len, d_model)

解码器(Decoder)阶段

  • 掩码多头注意力机制(Masked Multi-Head Attention)

    • 类似于编码器中的多头注意力机制,但使用了掩码来防止解码器在生成时“偷看”未来的信息。输出矩阵的维度为(seq_len, d_model)
  • 编码器-解码器注意力机制

    • 解码器的查询(Q)与编码器的键(K)和值(V)进行注意力计算,输出矩阵的维度为(seq_len, d_model)

输出阶段

  • 线性层和Softmax
    • 解码器的输出经过一个线性层,将维度从(seq_len, d_model)转换为(seq_len, vocab_size),其中vocab_size是词汇表的大小。
    • 最后通过Softmax层,得到每个单词的概率分布,用于预测下一个单词。

这些维度变化确保了Transformer模型能够有效地处理序列数据,并在各个层之间传递和转换信息。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com