您的位置:首页 > 新闻 > 资讯 > 北京网站制作团队_谷德设计网官网首页_itmc平台seo优化关键词个数_网络推广推广外包服务

北京网站制作团队_谷德设计网官网首页_itmc平台seo优化关键词个数_网络推广推广外包服务

2025/1/8 3:55:03 来源:https://blog.csdn.net/qq_22337877/article/details/144919887  浏览:    关键词:北京网站制作团队_谷德设计网官网首页_itmc平台seo优化关键词个数_网络推广推广外包服务
北京网站制作团队_谷德设计网官网首页_itmc平台seo优化关键词个数_网络推广推广外包服务

基本概述

Deepseek v3是Deepseek发布的旗舰模型,属于607B的混合专家(MoE)模型,其中活跃参数为37B。在当前的模型领域,它堪称最佳的开源模型,性能超越了Llama 3.1 405b、Qwen和Mistral等知名模型。根据基准测试结果,它与OpenAI的GPT - 4o以及Claude 3.5 Sonnet处于同一水平,并且在某些任务上的表现还要更胜一筹。

训练优势及突破

  • 成本与效率:在训练方面取得了令人瞩目的成果,仅花费约600万美元,在英伟达h800s集群上使用278.8万个GPU小时,基于14.8万亿高质量数据完成了预训练。与之形成鲜明对比的是,Llama 403b的训练数据量是其11倍,消耗了3084万个GPU小时,并且同样基于约15万亿的token进行训练。

技术创新

  • 模型架构

    • MoE架构:采用混合专家(MoE)架构,在处理每个token时,仅激活37B的参数,相较于传统的密集模型,这种稀疏激活方式极大地降低了计算需求。

    • 多头潜在注意力(MLA):运用此技术压缩了键值(Key - Value)缓存,不仅减少了内存使用量,还使得训练过程更加高效。

  • FP8混合精度训练:实现了FP8混合精度训练框架,与传统的FP16/FP32格式相比,内存占用最多可降低50%。同时,通过采用细粒度量化策略以及提高累加精度,在提升训练速度的同时有效保证了模型的准确性。

  • 负载均衡策略:针对MoE架构,首创了无辅助损失的负载均衡策略,这种策略在不引入传统辅助损失方法弊端的前提下,有效提升了模型的性能。

  • 训练框架:开发了自定义的HAI - LLM训练框架,该框架具备多项优化:

    • 双管道算法:通过双管道算法实现了高效的流水线并行,减少了流水线中的气泡,实现了计算和通信的重叠,从而提高了训练效率。

    • 高效通信内核:具备高效的跨节点全对全通信内核,能够充分利用网络带宽,加速数据传输。

    • 内存优化:通过精心的内存优化措施,避免了使用成本高昂的张量并行,进一步降低了训练成本。

新增特性

Deepseek v3新增了深度思考(Deepthink)功能,融入了Deepseek R1系列模型的思维链(CoT)能力。具体做法是通过创新的知识蒸馏方法,将R1系列模型的推理能力迁移到Deepseek v3中,在这个过程中,巧妙地将R1的验证和反思模式融入其中,不仅显著提升了v3的推理性能,还能够对v3的输出风格和长度进行有效控制。用户可以在Deepseek聊天界面中启用该特性,尽管其效果不如o1,但对模型推理能力有一定程度的增强。

与其他模型的性能对比

作者围绕推理、数学、编码、创意写作四个关键领域,使用一系列基准问题对Deepseek v3、GPT - 4o和Claude 3.5 Sonnet进行了测试:

  • 推理能力

    • “找第四个单词”问题:未启用Deepthink CoT时回答错误,启用后经过分析思考,正确找出了句子中的第四个单词,证明该特性有助于提升推理准确性。

    • “数单词数量”问题:Deepseek v3回答错误,但GPT - 4o和Claude 3.5 Sonnet同样未能答对。

    • “草莓单词中r的数量”问题:Deepseek v3正确回答,而GPT - 4o从未答对过该问题。

    • “农夫与羊过河”问题:无论是否启用Deepthink CoT,Deepseek v3都未能得出正确答案,但整体来看,它在推理能力上仍优于GPT - 4o和Claude 3.5 Sonnet,虽不及o1,但表现也较为出色。

  • 数学能力

    • 简单减法运算:对于“5.11 - 5.90”这类简单数学问题能够正确计算。

    • 平行四边形顶点问题:在求平行四边形可能的第四个顶点问题上,Deepseek v3能够准确找出所有可能的顶点,而GPT - 4o和3.5 Sonnet只能找出一个。

    • 整数求和问题:面对较复杂的整数相关数学问题,启用Deepthink特性后,Deepseek v3给出了正确答案,表明其数学能力强于GPT - 4o和Claude 3.5 Sonnet。

  • 编码能力:使用LeetCode上较新的“Super Heroes”这一“Hard”难度的动态规划问题进行测试。Deepseek v3首次回答时完全失败,一个测试用例都未通过,但再次尝试时给出了完美解决方案,且性能表现优异。综合来看,其编码能力接近GPT - 4,但Claude 3.5 Sonnet在编码方面仍有微弱优势。

  • 创意写作能力:Deepseek v3的输出在风格上与GPT - 4o极其相似,包括响应模式、段落结构以及用词等方面。例如在对同一段落进行优化时,两者输出近乎相同,推测可能是基于GPT - 4o生成的合成数据集进行训练。不过在创意写作方面,Claude 3.5 Sonnet因具有更人性化的观点和看法而略胜一筹。

最终评价与适用场景

  • 最终评价:在推理和数学任务上,Deepseek v3表现最佳,依次领先于Claude 3.5 Sonnet和OpenAI GPT - 4o;在编码和创意写作任务中,Claude 3.5 Sonnet更具优势,Deepseek v3与GPT - 4o水平相近,Deepseek v3稍强一些。

  • 适用场景:如果使用场景主要围绕GPT - 4o展开,那么可以放心切换到Deepseek v3;对于构建基于大语言模型(LLM)的应用来说,Deepseek v3因其卓越的性价比,是开发面向客户端AI应用的不二之选;此外,该模型权重开源,用户能够自行托管,这给予了用户对模型更多的控制权。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com