多元回归(Multiple Regression)是一种统计学方法,用于建立一个因变量(响应变量)与多个自变量(解释变量)之间的关系。多元回归的目的是通过最小化预测误差来找到最佳的拟合模型,从而可以用来预测因变量的值或理解自变量与因变量之间的关系。
多元回归就像线性回归一样,但是具有多个独立值,这意味着我们试图基于两个或多个变量来预测一个值。
多元回归的基本形式可以表示为:
其中:
- yy 是因变量。
- x1,x2,…,xnx1,x2,…,xn 是自变量。
- β0β0 是截距项(intercept)。
- β1,β2,…,βnβ1,β2,…,βn 是回归系数(regression coefficients)。
- ϵϵ 是误差项(error term),表示模型无法解释的随机误差。
例子:一组数据集,其中包含了一些有关汽车的信息。
Car | Model | Volume | Weight | CO2 |
---|---|---|---|---|
Toyota | Aygo | 1000 | 790 | 99 |
Mitsubishi | Space Star | 1200 | 1160 | 95 |
Skoda | Citigo | 1000 | 929 | 95 |
Fiat | 500 | 900 | 865 | 90 |
Mini | Cooper | 1500 | 1140 | 105 |
VW | Up! | 1000 | 929 | 105 |
Skoda | Fabia | 1400 | 1109 | 90 |
Mercedes | A-Class | 1500 | 1365 | 92 |
Ford | Fiesta | 1500 | 1112 | 98 |
Audi | A1 | 1600 | 1150 | 99 |
Hyundai | I20 | 1100 | 980 | 99 |
Suzuki | Swift | 1300 | 990 | 101 |
Ford | Fiesta | 1000 | 1112 | 99 |
Honda | Civic | 1600 | 1252 | 94 |
Hundai | I30 | 1600 | 1326 | 97 |
Opel | Astra | 1600 | 1330 | 97 |
BMW | 1 | 1600 | 1365 | 99 |
Mazda | 3 | 2200 | 1280 | 104 |
Skoda | Rapid | 1600 | 1119 | 104 |
Ford | Focus | 2000 | 1328 | 105 |
Ford | Mondeo | 1600 | 1584 | 94 |
Opel | Insignia | 2000 | 1428 | 99 |
Mercedes | C-Class | 2100 | 1365 | 99 |
Skoda | Octavia | 1600 | 1415 | 99 |
Volvo | S60 | 2000 | 1415 | 99 |
Mercedes | CLA | 1500 | 1465 | 102 |
Audi | A4 | 2000 | 1490 | 104 |
Audi | A6 | 2000 | 1725 | 114 |
Volvo | V70 | 1600 | 1523 | 109 |
BMW | 5 | 2000 | 1705 | 114 |
Mercedes | E-Class | 2100 | 1605 | 115 |
Volvo | XC70 | 2000 | 1746 | 117 |
Ford | B-Max | 1600 | 1235 | 104 |
BMW | 2 | 1600 | 1390 | 108 |
Opel | Zafira | 1600 | 1405 | 109 |
Mercedes | SLK | 2500 | 1395 | 120 |
可以根据发动机排量的大小预测汽车的二氧化碳排放量,但是通过多元回归,我们可以引入更多变量,例如汽车的重量,以使预测更加准确。
在 Python 中,我们拥有可以完成这项工作的模块。
// 导入 Pandas、sklearn 模块
import pandas
from sklearn import linear_model// 读取 csv 文件并返回一个 DataFrame 对象。
df = pandas.read_csv("cars.csv")// 列出独立值,并将这个变量命名为 X。
// 将相关值放入名为 y 的变量中。
X = df[['Weight', 'Volume']]
y = df['CO2']// 使用 LinearRegression() 方法创建一个线性回归对象。
// 该对象有一个名为 fit() 的方法,该方法将独立值和从属值作为参数,并用描述这种关系的数据填充回归对象:
regr = linear_model.LinearRegression()
regr.fit(X, y)// 我们有了一个回归对象,可以根据汽车的重量和排量预测 CO2 值:
# 预测重量为 2300kg、排量为 1300ccm 的汽车的二氧化碳排放量:predictedCO2 = regr.predict([[2300, 1300]])print(predictedCO2)
输出结果:[107.2087328]
根据此数据可以预测:配备 1.3 升发动机,重量为 2300 千克的汽车,每行驶 1 公里,就会释放约 107 克二氧化碳。
系数
系数是描述与未知变量的关系的因子。
例如:如果 x
是变量,则 3x
是 x
的两倍。x
是未知变量,数字 3
是系数。
在这种情况下,我们可以要求重量相对于 CO2 的系数值,以及体积相对于 CO2 的系数值。我们得到的答案告诉我们,如果我们增加或减少其中一个独立值,将会发生什么。
打印回归对象的系数值:
import pandas
from sklearn import linear_modeldf = pandas.read_csv("cars.csv")X = df[['Weight', 'Volume']]
y = df['CO2']regr = linear_model.LinearRegression()
regr.fit(X, y)print(regr.coef_)
结果:[0.00755095 0.00780526]
结果数组表示重量和排量的系数值。
Weight: 0.00755095
Volume: 0.00780526
这些值告诉我们,如果重量增加 1g,则 CO2 排放量将增加 0.00755095g。
如果发动机尺寸(容积)增加 1 ccm,则 CO2 排放量将增加 0.00780526g。
我认为这是一个合理的猜测,但还是请进行测试!
我们已经预言过,如果一辆配备 1300ccm 发动机的汽车重 2300 千克,则二氧化碳排放量将约为 107 克。
如果我们增加 1000g 的重量会怎样?
复制上面的例子,但是将车重从 2300 更改为 3300:
import pandas
from sklearn import linear_modeldf = pandas.read_csv("cars.csv")X = df[['Weight', 'Volume']]
y = df['CO2']regr = linear_model.LinearRegression()
regr.fit(X, y)predictedCO2 = regr.predict([[3300, 1300]])print(predictedCO2)
结果:[114.75968007]
我们已经预测,配备 1.3 升发动机,重量为 3.3 吨的汽车,每行驶 1 公里,就会释放约 115 克二氧化碳。
这表明 0.00755095 的系数是正确的:
107.2087328 + (1000 * 0.00755095) = 114.75968
END.