您的位置:首页 > 新闻 > 热点要闻 > 网站logo设计流程_全屋家具定制价格表_深圳网络推广服务公司_新闻最近的新闻

网站logo设计流程_全屋家具定制价格表_深圳网络推广服务公司_新闻最近的新闻

2025/1/15 15:51:49 来源:https://blog.csdn.net/2303_80879232/article/details/144284685  浏览:    关键词:网站logo设计流程_全屋家具定制价格表_深圳网络推广服务公司_新闻最近的新闻
网站logo设计流程_全屋家具定制价格表_深圳网络推广服务公司_新闻最近的新闻
  • PyTorch: 2.5.0
  • TorchVision: 0.20.0
  • Torchaudio: 2.5.0
  • PyTorch CUDA: 11.8

(yolov8) D:\Miniconda3\envs\yolov8>conda install pytorch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 pytorch-cuda=11.8 -c pytorch -c nvidia
Channels:
 - pytorch
 - nvidia
 - defaults
Platform: win-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: D:\Miniconda3\envs\yolov8

  added / updated specs:
    - pytorch-cuda=11.8
    - pytorch==2.5.0
    - torchaudio==2.5.0
    - torchvision==0.20.0


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    ca-certificates-2024.11.26 |       haa95532_0         132 KB
    cuda-cccl-12.4.127         |                0         1.4 MB  nvidia
    cuda-cudart-11.8.89        |                0         1.4 MB  nvidia
    cuda-cudart-dev-11.8.89    |                0         723 KB  nvidia
    cuda-cupti-11.8.87         |                0        11.5 MB  nvidia
    cuda-libraries-11.8.0      |                0           1 KB  nvidia
    cuda-libraries-dev-11.8.0  |                0           1 KB  nvidia
    cuda-nvrtc-11.8.89         |                0        72.1 MB  nvidia
    cuda-nvrtc-dev-11.8.89     |                0        16.1 MB  nvidia
    cuda-nvtx-11.8.86          |                0          43 KB  nvidia
    cuda-profiler-api-12.4.127 |                0          19 KB  nvidia
    cuda-runtime-11.8.0        |                0           1 KB  nvidia
    libcublas-11.11.3.6        |                0          33 KB  nvidia
    libcublas-dev-11.11.3.6    |                0       375.9 MB  nvidia
    libcufft-10.9.0.58         |                0           6 KB  nvidia
    libcufft-dev-10.9.0.58     |                0       144.6 MB  nvidia
    libcurand-10.3.5.147       |                0           4 KB  nvidia
    libcurand-dev-10.3.5.147   |                0        49.7 MB  nvidia
    libcusolver-11.4.1.48      |                0          29 KB  nvidia
    libcusolver-dev-11.4.1.48  |                0        94.1 MB  nvidia
    libcusparse-11.7.5.86      |                0          13 KB  nvidia
    libcusparse-dev-11.7.5.86  |                0       175.7 MB  nvidia
    libnpp-11.8.0.86           |                0         294 KB  nvidia
    libnpp-dev-11.8.0.86       |                0       143.2 MB  nvidia
    libnvjpeg-11.9.0.86        |                0           4 KB  nvidia
    libnvjpeg-dev-11.9.0.86    |                0         1.9 MB  nvidia
    pytorch-2.5.0              |py3.10_cuda11.8_cudnn9_0        1.39 GB  pytorch
    pytorch-cuda-11.8          |       h24eeafa_6           7 KB  pytorch
    pytorch-mutex-1.0          |             cuda           3 KB  pytorch
    torchaudio-2.5.0           |      py310_cu118         7.0 MB  pytorch
    torchvision-0.20.0         |      py310_cu118         7.7 MB  pytorch
    ------------------------------------------------------------
                                           Total:        2.46 GB

The following NEW packages will be INSTALLED:

  cuda-cccl          nvidia/win-64::cuda-cccl-12.4.127-0
  cuda-cudart        nvidia/win-64::cuda-cudart-11.8.89-0
  cuda-cudart-dev    nvidia/win-64::cuda-cudart-dev-11.8.89-0
  cuda-cupti         nvidia/win-64::cuda-cupti-11.8.87-0
  cuda-libraries     nvidia/win-64::cuda-libraries-11.8.0-0
  cuda-libraries-dev nvidia/win-64::cuda-libraries-dev-11.8.0-0
  cuda-nvrtc         nvidia/win-64::cuda-nvrtc-11.8.89-0
  cuda-nvrtc-dev     nvidia/win-64::cuda-nvrtc-dev-11.8.89-0
  cuda-nvtx          nvidia/win-64::cuda-nvtx-11.8.86-0
  cuda-profiler-api  nvidia/win-64::cuda-profiler-api-12.4.127-0
  cuda-runtime       nvidia/win-64::cuda-runtime-11.8.0-0
  libcublas          nvidia/win-64::libcublas-11.11.3.6-0
  libcublas-dev      nvidia/win-64::libcublas-dev-11.11.3.6-0
  libcufft           nvidia/win-64::libcufft-10.9.0.58-0
  libcufft-dev       nvidia/win-64::libcufft-dev-10.9.0.58-0
  libcurand          nvidia/win-64::libcurand-10.3.5.147-0
  libcurand-dev      nvidia/win-64::libcurand-dev-10.3.5.147-0
  libcusolver        nvidia/win-64::libcusolver-11.4.1.48-0
  libcusolver-dev    nvidia/win-64::libcusolver-dev-11.4.1.48-0
  libcusparse        nvidia/win-64::libcusparse-11.7.5.86-0
  libcusparse-dev    nvidia/win-64::libcusparse-dev-11.7.5.86-0
  libnpp             nvidia/win-64::libnpp-11.8.0.86-0
  libnpp-dev         nvidia/win-64::libnpp-dev-11.8.0.86-0
  libnvjpeg          nvidia/win-64::libnvjpeg-11.9.0.86-0
  libnvjpeg-dev      nvidia/win-64::libnvjpeg-dev-11.9.0.86-0
  pytorch            pytorch/win-64::pytorch-2.5.0-py3.10_cuda11.8_cudnn9_0
  pytorch-cuda       pytorch/win-64::pytorch-cuda-11.8-h24eeafa_6
  sympy              pkgs/main/win-64::sympy-1.13.2-py310haa95532_0
  torchvision        pytorch/win-64::torchvision-0.20.0-py310_cu118
  typing_extensions  pkgs/main/win-64::typing_extensions-4.11.0-py310haa95532_0

The following packages will be UPDATED:

  ca-certificates                      2024.9.24-haa95532_0 --> 2024.11.26-haa95532_0
  pytorch-mutex                                     1.0-cpu --> 1.0-cuda

The following packages will be DOWNGRADED:

  torchaudio                                2.5.1-py310_cpu --> 2.5.0-py310_cu118


Proceed ([y]/n)? y


Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done

(yolov8) D:\Miniconda3\envs\yolov8>

(base) D:\code\ultralytics-main>conda activate yolov8

(yolov8) D:\code\ultralytics-main>
(yolov8) D:\code\ultralytics-main>pip show ultralytics
Name: ultralytics
Version: 8.3.36
 

(yolov8) D:\code\ultralytics-main>nvidia-smi
Fri Dec  6 10:44:32 2024       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 551.61                 Driver Version: 551.61         CUDA Version: 12.4     |
 

-------------------------------最新的 cpu  没有gpu

(new) D:\code\ultralytics-main>
(new) D:\code\ultralytics-main>pip show torch
Name: torch
Version: 2.5.1
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Home-page: https://pytorch.org/
Author: PyTorch Team
Author-email: packages@pytorch.org
License: BSD-3-Clause
Location: d:\miniconda3\envs\new\lib\site-packages
Requires: filelock, fsspec, jinja2, networkx, sympy, typing-extensions
Required-by: torchaudio, torchvision, ultralytics, ultralytics-thop

(new) D:\code\ultralytics-main>pip show ultralytics
Name: ultralytics
Version: 8.3.44
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
Home-page: https://ultralytics.com
Author:
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
License: AGPL-3.0
Location: d:\miniconda3\envs\new\lib\site-packages
Requires: matplotlib, numpy, opencv-python, pandas, pillow, psutil, py-cpuinfo, pyyaml, requests, scipy, seaborn, torch, torchvision, tqdm, ultralytics-thop
Required-by:

(new) D:\code\ultralytics-main>pip show torchvision
Name: torchvision
Version: 0.20.1
Summary: image and video datasets and models for torch deep learning
Home-page: https://github.com/pytorch/vision
Author: PyTorch Core Team
Author-email: soumith@pytorch.org
License: BSD
Location: d:\miniconda3\envs\new\lib\site-packages
Requires: numpy, pillow, torch
Required-by: ultralytics

(new) D:\code\ultralytics-main>pip show torchaudio
Name: torchaudio
Version: 2.5.1
Summary: An audio package for PyTorch
Home-page: https://github.com/pytorch/audio
Author: Soumith Chintala, David Pollack, Sean Naren, Peter Goldsborough, Moto Hira, Caroline Chen, Jeff Hwang, Zhaoheng Ni, Xiaohui Zhang
Author-email: soumith@pytorch.org
License:
Location: d:\miniconda3\envs\new\lib\site-packages
Requires: torch
Required-by:

(new) D:\code\ultralytics-main>
 

8.3 创建新的 Conda 环境(推荐)

如果上述方法无法解决问题,建议创建一个全新的 Conda 环境,确保包的干净安装:

 

bash

复制代码

# 创建一个新的环境,命名为 yolov8_cpu,使用 Python 3.10 conda create -n yolov8_cpu python=3.10 # 激活新环境 conda activate yolov8_cpu # 升级 pip python -m pip install --upgrade pip # 安装必要的库 pip install torch torchvision torchaudio ultralytics matplotlib numpy opencv-python pandas pillow pyyaml scipy seaborn # 安装可选的库 pip install tensorboard albumentations scikit-learn

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com