您的位置:首页 > 新闻 > 资讯 > 可以直接观看的网站正能量_优化教程网官网_搜索网站的软件_搜索营销

可以直接观看的网站正能量_优化教程网官网_搜索网站的软件_搜索营销

2024/12/25 14:55:02 来源:https://blog.csdn.net/hiliang521/article/details/144316086  浏览:    关键词:可以直接观看的网站正能量_优化教程网官网_搜索网站的软件_搜索营销
可以直接观看的网站正能量_优化教程网官网_搜索网站的软件_搜索营销

文章目录

    • 1. 归一化对决策树的影响
    • 2. 选择决策树模型
    • 3. 决策树计算
    • 4. 基尼系数的优势
    • 5. 在叶子上使用线性模型的优缺点

1. 归一化对决策树的影响

题目:对于一些机器学习模型(例如,神经网络),对特征进行归一化(normalization)是一个有效的预处理操作。一个常见的归一化方式是对每一个特征数据,减去该特征的均值,然后除以该特征的方差。请回答,对于基于决策树的一系列算法,归一化是否会影响训练结果?

解答:
对于基于决策树的一系列算法,归一化通常不会影响训练结果。

决策树算法在构建树的过程中主要依据特征的信息增益、基尼系数等标准来进行分裂,并不依赖于特征的绝对数值大小。它更关注的是特征之间的相对关系以及特征对分类或回归目标的区分能力
而归一化主要是改变特征的数值范围和分布,对于决策树算法来说,特征的相对大小关系和顺序通常不会因归一化而改变。

所以,对基于决策树的算法进行特征归一化一般不会对训练结果产生实质性的影响。

在这里插入图片描述

 

2. 选择决策树模型

在这里插入图片描述

在这里插入图片描述

 

3. 决策树计算

在这里插入图片描述

 
 

4. 基尼系数的优势

在这里插入图片描述

 

在这里插入图片描述

 

5. 在叶子上使用线性模型的优缺点

在这里插入图片描述

在这里插入图片描述

 

参考:《人工智能基础-姚期智》

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com