您的位置:首页 > 新闻 > 资讯 > 上海策朋网站设计公司_网络架构相关文献_重庆网站建设与制作_营销型网站建设专家

上海策朋网站设计公司_网络架构相关文献_重庆网站建设与制作_营销型网站建设专家

2024/12/27 3:37:56 来源:https://blog.csdn.net/2301_80912559/article/details/144200022  浏览:    关键词:上海策朋网站设计公司_网络架构相关文献_重庆网站建设与制作_营销型网站建设专家
上海策朋网站设计公司_网络架构相关文献_重庆网站建设与制作_营销型网站建设专家

Spark 3.x 中的自适应查询执行(Adaptive Query Execution,简称 AQE)通过多种方式提升性能,主要包括以下几个方面:

  1. 动态合并 Shuffle 分区(Coalescing Post Shuffle Partitions)

    • 当 Shuffle 操作完成后,AQE 可以根据 Map 输出的统计信息自动合并过小的分区,以减少 Reduce 阶段的分区数量,从而提高查询效率。这个特性通过配置 spark.sql.adaptive.coalescePartitions.enabled 开启,默认在 Spark 3.2.0 及以后的版本中是启用的
  2. 动态切换 Join 策略

    • 在 Spark 2.x 中,broadcast-hash join 只能通过参数控制,不易精确控制。Spark 3.x 的 AQE 能够根据运行时的统计信息自动将 sort-merge join 切换到 broadcast-hash join,优化性能。
  3. 动态优化数据倾斜的 Join

    • 在 Spark 2.x 中,需要手动处理数据倾斜问题。Spark 3.x 的 AQE 可以自动将倾斜的分区分成更小的分区进行 join,极大优化性能。
  4. 动态裁剪分区(Dynamic Partition Pruning)

    • 在 Spark 2.x 中,优化器很难在编译时确定哪些分区可以跳过不读,导致读了一些不需要的数据。Spark 3.x 的 AQE 会首先过滤维表,根据过滤后的结果找到只需要读事实表的哪些分区,提升性能。
  5. 自动处理数据倾斜

    • AQE 自动检测并处理数据倾斜,通过将大型倾斜分区拆分为更小的分区,确保工作负载平衡,提高性能。
  6. 动态优化洗牌分区

    • AQE 根据实际数据的大小动态调整洗牌分区的数量,优化并行性和开销之间的平衡,增强资源管理,减少内存使用和执行时间。
  7. 减少手动调优需求

    • 传统的查询执行通常需要手动调优以实现最佳性能。AQE 自动化了许多这一过程,减少了手动干预的需求,使得开箱即用即可获得良好性能。

通过这些机制,AQE 在运行时动态优化执行计划,根据实时数据特征调整,从而提升查询性能,减少资源消耗,并减少手动调优的需求。这些改进使得 Spark 3.x 在处理大型或倾斜数据集时,相较于 Spark 2.x,性能有了显著提升。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com