您的位置:首页 > 房产 > 建筑 > 基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM

基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM

2025/1/4 11:32:50 来源:https://blog.csdn.net/aycd1234/article/details/142347817  浏览:    关键词:基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 支持向量机(SVM)

4.2 WOA

4.3 WOA优化SVM参数

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

matlab2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

..............................................................
for t=1:Iterstfor i=1:Numif xwoa(i,1)<0xwoa(i,1)=0.1; endif xwoa(i,2)<0xwoa(i,2)=0.001; end%目标函数更新[pa(i)]  = fitness(xwoa(i,:),P,T);Fitout   = pa(i);%更新if Fitout < woa_get  woa_get = Fitout; woa_idx = xwoa(i,:);endend%调整参数c1 = 2-t*((1)/120); c2 =-1+t*((-1)/120);%位置更新for i=1:Numrng(i);r1         = rand();r2         = rand();K1         = 2*c1*r1-c1;  K2         = 2*r2;             l          =(c2-1)*rand + 1;  rand_flag  = rand();   for j=1:Dif rand_flag<0.6   if abs(K1)>=1RLidx    = floor(Num*rand()+1);X_rand   = xwoa(RLidx, :);D_X_rand = abs(K2*X_rand(j)-xwoa(i,j)); xwoa(i,j)= X_rand(j)-K1*D_X_rand;     elseD_Leader = abs(K2*woa_idx(j)-xwoa(i,j)); xwoa(i,j)= woa_idx(j)-K1*D_Leader;    endelsedistLeader = abs(woa_idx(j)-xwoa(i,j));xwoa(i,j)  = distLeader*exp(12*l).*cos(l.*2*pi)+woa_idx(j);endendend[pb]     = fitness(woa_idx,P,T);Pbest(t) = pb;
end05_071m

4.算法理论概述

      乳腺癌是女性中最常见的恶性肿瘤之一,早期诊断对于提高治愈率至关重要。机器学习技术在医学图像分析、生物标志物检测等方面的应用已经取得了显著成果。支持向量机(Support Vector Machine, SVM)是一种强大的分类工具,而鲸鱼优化算法(Whale Optimization Algorithm, WOA)可以用于优化SVM的参数。

4.1 支持向量机(SVM)

       SVM的目标是在不同类别之间找到一个最优的超平面,使得两类样本被尽可能远地分开。对于线性可分问题,SVM试图找到一个线性决策边界,即:

4.2 WOA

       WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。鲸鱼优化算法模拟了虎鲸的两种主要觅食策略: Bubble-net attacking 和 Spiral updating 过程。

4.3 WOA优化SVM参数

       在WOA-SVM中,WOA用于优化SVM的参数,如C(惩罚系数)、γ(核函数中的参数)。具体步骤如下:

1.初始化WOA种群;
2.每个粒子代表一组SVM参数;
3.使用交叉验证的方法评估每组参数下的SVM分类性能;
4.根据分类性能更新粒子的位置和速度;
5.迭代直至满足终止条件。
       WOA-SVM不仅能够有效解决SVM中参数选择的问题,还能够获得比传统SVM和BP神经网络更高的分类精度和更好的泛化能力。因此,在处理如乳腺癌这样的复杂分类问题时,WOA-SVM提供了一种有效的解决方案。

5.算法完整程序工程

OOOOO

OOO

O

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com