您的位置:首页 > 房产 > 家装 > 优先级队列---java---黑马

优先级队列---java---黑马

2025/1/14 18:27:56 来源:https://blog.csdn.net/weixin_49326024/article/details/142187404  浏览:    关键词:优先级队列---java---黑马

优先级队列

双端队列、队列、栈对比

定义特点
队列一端删除(头),另一端添加(尾)First In First Out
一端删除和添加First In Last Out
双端队列两端都可以添加和删除
优先级队列优先级高先出队
延时队列根据延时时间确定优先级
并发非阻塞队列队列空或满时不阻塞
并发阻塞队列队列空时删除阻塞,队列满时添加阻塞

队列接口实现

public interface Queue<E> {boolean offer(E value);E poll();E peek();boolean isEmpty();boolean isFull();
}
public interface Priority {// 返回对象优先级,数字越大,优先级越高int priority();
}

基于无序数组实现

public class PriorityQueue1<E extends Priority> implements Queue<E> {Priority[] array;int size;public PriorityQueue1(int capacity) {this.array = new Priority[capacity]; }@Override		// 数组尾部添加元素,时间复杂度为O(1)public boolean offer(E value) {if (isFull()) {return false;}array[size++] = value;return true;}public int selectMax() {int max = 0;for(int i = 1; i < size; i++) {if (array[i].priority() > array[max].priority()) {max = i;}}return max;}@Override		// 移除优先级高的元素,时间复杂度为O(n)public E poll() {if (isEmpty()) {return null;}int index = selectMax();E value = (E) array[index];remove(index);return value;}public void remove(int index) {if (index < size - 1) {System.arraycopy(array, index + 1, array, index, size - index - 1);}size--;}@Override		// 得到优先级高的元素,时间复杂度为O(n)public E peek() {if (isEmpty()) {return null;}int index = selectMax();return (E) array[index];}@Overridepublic boolean isEmpty(){return size == 0;}@Overridepublic boolean isFull() {return size == array.length;}
}

基于有序数组实现

public class PriorityQueue2<E extends Priority> implements Queue<E> {Priority[] array;int size;public PriorityQueue1(int capacity) {this.array = new Priority[capacity]; }@Override		// 数组尾部添加元素,时间复杂度为O(n)public boolean offer(E value) {if (isFull()) {return false;}insert(value);size++;return true;}private void insert(E value) {int i = size - 1;while (i >= 0 && array[i].priority() > value.priority()) {array[i + 1] = array[i];i--;}array[i + 1] = value;}@Override		// 移除优先级高的元素,时间复杂度为O(1)public E poll() {if (isEmpty()) {return null;}E value = (E) array[size - 1];size--;array[size] = null;return value;}@Override		// 得到优先级高的元素,时间复杂度为O(1)public E peek() {if (isEmpty()) {return null;}return (E) array[size - 1];}@Overridepublic boolean isEmpty(){return size == 0;}@Overridepublic boolean isFull() {return size == array.length;}
}

定义

堆是一种基于树得数据结构,通过用完全二叉树实现。堆的特性如下:

  • 在大顶堆中,任意节点C与它的父节点P符合, P . v l a u e ≥ C . v a l u e P.vlaue\ge C.value P.vlaueC.value
  • 在小顶堆中,任意节点C与它的父节点P符合, P . v l a u e ≤ C . v a l u e P.vlaue\le C.value P.vlaueC.value
  • 最顶层的节点(没有父亲),称之为 r o o t root root 根节点。

特征

  • 如果从索引0处开始存储节点数据
    • 节点 i i i 的父节点为 f l o o r ( ( i − 1 ) / 2 ) floor((i-1)/2) floor((i1)/2) ,当 i > 0 i>0 i>0
    • 节点 i i i 的左子节点为 2 i + 1 2i+1 2i+1 ,右子节点 2 i + 2 2i+2 2i+2 ,当然它们得 < s i z e <size <size
  • 如果从索引1处开始存储节点数据
    • 节点 i i i 的父节点为 f l o o r ( i / 2 ) floor(i/2) floor(i/2) ,当 i > 0 i>0 i>0
    • 节点 i i i 的左子节点为 2 i 2i 2i ,右子节点 2 i + 1 2i+1 2i+1 ,当然它们得 < s i z e <size <size

堆实现优先级队列

public class PriorityQueue3<E extends Priority> implements Queue<E> {Priority[] array;int size;public PriorityQueue1(int capacity) {this.array = new Priority[capacity]; }@Override		// 数组尾部添加元素,时间复杂度为O(n)public boolean offer(E value) {if (isFull()) {return false;}int child = size++;int parent = (child - 1) / 2; while (child > 0 && value.priority() > array[parent].priority()) {array[child] = array[parent];child = parent;parent = (child - 1) / 2;}array[child] = value;return true;}private void insert(E value) {int i = size - 1;while (i >= 0 && array[i].priority() > value.priority()) {array[i + 1] = array[i];i--;}array[i + 1] = value;}@Override		// 移除优先级高的元素,时间复杂度为O(1)public E poll() {if (isEmpty()) {return null;}swap(0, size - 1);size--;E value = array[size];array[size] = null;//下潜down(0);return value;}private void down(int parent) {int left = 2 * parent + 1;int right = left + 1;int max = parent;if (array[left].priority() > parent.priority()) {max = left;}if (array[right].priority() > parent.priority()) {max = right;}if (max != parent) {swap(max, parent);down(max);}}@Override		// 得到优先级高的元素,时间复杂度为O(1)public E peek() {if (isEmpty()) {return null;}return (E) array[0];}private void swap(int i, int j) {Priority t = array[i];array[i] = array[j];array[j] = t;}@Overridepublic boolean isEmpty(){return size == 0;}@Overridepublic boolean isFull() {return size == array.length;}
}

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com