您的位置:首页 > 房产 > 家装 > 1.初识算法

1.初识算法

2025/1/7 8:03:56 来源:https://blog.csdn.net/Lemon_C17y/article/details/141295059  浏览:    关键词:1.初识算法

1.1   算法无处不在

当我们听到“算法”这个词时,很自然地会想到数学。然而实际上,许多算法并不涉及复杂数学,而是更多地依赖基本逻辑,这些逻辑在我们的日常生活中处处可见。

在正式探讨算法之前,有一个有趣的事实值得分享:你已经在不知不觉中学会了许多算法,并习惯将它们应用到日常生活中了。下面我将举几个具体的例子来证实这一点。

例一:查字典。在字典里,每个汉字都对应一个拼音,而字典是按照拼音字母顺序排列的。假设我们需要查找一个拼音首字母为 r 的字,通常会按照图 1-1 所示的方式实现。

  1. 翻开字典约一半的页数,查看该页的首字母是什么,假设首字母为 m 。
  2. 由于在拼音字母表中 r 位于 m 之后,所以排除字典前半部分,查找范围缩小到后半部分。
  3. 不断重复步骤 1. 和 步骤 2. ,直至找到拼音首字母为 r 的页码为止。

查字典步骤

 

例二:整理扑克。我们在打牌时,每局都需要整理手中的扑克牌,使其从小到大排列,实现流程如图 1-2 所示。

  1. 将扑克牌划分为“有序”和“无序”两部分,并假设初始状态下最左 1 张扑克牌已经有序。
  2. 在无序部分抽出一张扑克牌,插入至有序部分的正确位置;完成后最左 2 张扑克已经有序。
  3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。

扑克排序步骤

图 1-2   扑克排序步骤

上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序库函数中都有插入排序的身影。

例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他会很自然地完成如图 1-3 所示的思考。

  1. 可选项是比 31 元面值更小的货币,包括 1 元、5 元、10 元、20 元。
  2. 从可选项中拿出最大的 20 元,剩余 31−20=11 元。
  3. 从剩余可选项中拿出最大的 10 元,剩余 11−10=1 元。
  4. 从剩余可选项中拿出最大的 1 元,剩余 1−1=0 元。
  5. 完成找零,方案为 20+10+1=31 元。

货币找零过程

图 1-3   货币找零过程

在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。

小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题转移到计算机上,以更高效的方式解决各种复杂问题。

1.2   算法是什么

1.2.1   算法定义

算法(algorithm)是在有限时间内解决特定问题的一组指令或操作步骤,它具有以下特性。

  • 问题是明确的,包含清晰的输入和输出定义。
  • 具有可行性,能够在有限步骤、时间和内存空间下完成。
  • 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。

1.2.2   数据结构定义

数据结构(data structure)是组织和存储数据的方式,涵盖数据内容、数据之间关系和数据操作方法,它具有以下设计目标。

  • 空间占用尽量少,以节省计算机内存。
  • 数据操作尽可能快速,涵盖数据访问、添加、删除、更新等。
  • 提供简洁的数据表示和逻辑信息,以便算法高效运行。

数据结构设计是一个充满权衡的过程。如果想在某方面取得提升,往往需要在另一方面作出妥协。下面举两个例子。

  • 链表相较于数组,在数据添加和删除操作上更加便捷,但牺牲了数据访问速度。
  • 图相较于链表,提供了更丰富的逻辑信息,但需要占用更大的内存空间。

1.2.3   数据结构与算法的关系

如图 1-4 所示,数据结构与算法高度相关、紧密结合,具体表现在以下三个方面。

  • 数据结构是算法的基石。数据结构为算法提供了结构化存储的数据,以及操作数据的方法。
  • 算法是数据结构发挥作用的舞台。数据结构本身仅存储数据信息,结合算法才能解决特定问题。
  • 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。

数据结构与算法的关系

图 1-4   数据结构与算法的关系

数据结构与算法犹如图 1-5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。我们按照说明书一步步操作,就能组装出精美的积木模型。

两者的详细对应关系如表 1-1 所示。

表 1-1   将数据结构与算法类比为拼装积木

数据结构与算法拼装积木
输入数据未拼装的积木
数据结构积木组织形式,包括形状、大小、连接方式等
算法把积木拼成目标形态的一系列操作步骤
输出数据积木模型

值得说明的是,数据结构与算法是独立于编程语言的。

1.3   小结

  • 算法在日常生活中无处不在,并不是遥不可及的高深知识。实际上,我们已经在不知不觉中学会了许多算法,用以解决生活中的大小问题。
  • 查字典的原理与二分查找算法相一致。二分查找算法体现了分而治之的重要算法思想。
  • 整理扑克的过程与插入排序算法非常类似。插入排序算法适合排序小型数据集。
  • 货币找零的步骤本质上是贪心算法,每一步都采取当前看来最好的选择。
  • 算法是在有限时间内解决特定问题的一组指令或操作步骤,而数据结构是计算机中组织和存储数据的方式。
  • 数据结构与算法紧密相连。数据结构是算法的基石,而算法是数据结构发挥作用的舞台。
  • 我们可以将数据结构与算法类比为拼装积木,积木代表数据,积木的形状和连接方式等代表数据结构,拼装积木的步骤则对应算法。
  • 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺畅、性能不错,看上去并没有什么问题。
  • 但如果学过算法,我们就会知道内置排序函数的时间复杂度是 O(nlog⁡n) ;而如果给定的数据是固定位数的整数(例如学号),那么我们就可以用效率更高的“基数排序”来做,将时间复杂度降为 O(nk) ,其中 k 为位数。当数据体量很大时,节省出来的运行时间就能创较大价值(成本降低、体验变好等)。

在工程领域中,大量问题是难以达到最优解的,许多问题只是被“差不多”地解决了。问题的难易程度一方面取决于问题本身的性质,另一方面也取决于观测问题的人的知识储备。人的知识越完备、经验越多,分析问题就会越深入,问题就能被解决得更优雅。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com