您的位置:首页 > 房产 > 家装 > 网页设计版式图片_购销网_公司网络组建方案_最新全国疫情消息

网页设计版式图片_购销网_公司网络组建方案_最新全国疫情消息

2025/3/14 18:14:01 来源:https://blog.csdn.net/qq_30135181/article/details/145593732  浏览:    关键词:网页设计版式图片_购销网_公司网络组建方案_最新全国疫情消息
网页设计版式图片_购销网_公司网络组建方案_最新全国疫情消息

前序文章
【AI系列】从零开始学习大模型GPT (1)- Build a Large Language Model (From Scratch)

Build a Large Language Model

    • 背景
    • 第1章:理解大型语言模型
    • 第2章:处理文本数据
    • 第3章:编码Attention机制
      • 什么是Attention机制?
        • Attention机制的基本原理
        • 数学表示
        • 应用
        • 总结
      • 为什么要使用注意力机制
      • 如何实现?
        • 简单注意力机制
        • 带训练权重的注意力机制
        • 紧凑注意力机制 mask attention
        • 多头注意力机制
    • 第4章:从零实现GPT模型
    • 第5章:在未标记数据上进行预训练
    • 第6章:用于文本分类的微调
    • 第7章:为指令执行进行微调
    • 参考

背景

第1章:理解大型语言模型

见前序文章【AI系列】从零开始学习大模型GPT (1)- Build a Large Language Model (From Scratch)

第2章:处理文本数据

见前序文章【AI系列】从零开始学习大模型GPT (1)- Build a Large Language Model (From Scratch)

第3章:编码Attention机制

什么是Attention机制?

Attention机制是一种在深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和计算机视觉等领域。它的核心思想是让模型在处理输入数据时,能够有选择地关注某些重要部分,而不是对所有部分一视同仁。这种机制可以显著提高模型的性能和效率。

Attention机制的基本原理

Attention机制的基本原理可以通过以下几个步骤来描述:

  1. 计算注意力权重(Attention Weights)
    对于每一个输入元素,计算它与其他输入元素的相关性(即注意力权重)。这些权重通常通过点积(dot product)或其他相似度度量方法来计算。

  2. 归一化权重
    使用Softmax函数将这些权重归一化,使它们的和为1。这一步确保了权重可以被解释为概率分布。

  3. 加权求和
    使用归一化后的权重对输入元素进行加权求和,得到一个新的表示。这一步的结果是模型能够更关注那些权重较高的输入元素。

数学表示

假设有一个输入序列 X = [ x 1 , x 2 , … , x n ] X = [x_1, x_2, \ldots, x_n] X=[x1,x2,,xn],Attention机制的计算过程可以表示为:

  1. 计算注意力权重
    e i j = score ( x i , x j ) e_{ij} = \text{score}(x_i, x_j) eij=score(xi,xj)
    其中, score ( x i , x j ) \text{score}(x_i, x_j) score(xi,xj) 可以是点积、加性函数等。

  2. 归一化权重
    α i j = exp ⁡ ( e i j ) ∑ k = 1 n exp ⁡ ( e i k ) \alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{n} \exp(e_{ik})} αij=k=1nexp(eik)exp

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com